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Mathematical Motivation
Consider a general stability problem

Α

!u!
du

dt
= F (u; α)

This is the same at the “coupled dynamical system”

du

dt
= F (u; α)

dα

dt
= 0



Mathematical Motivation

What if we make it a bit more interesting?

du

dt
= F (u; α)

Recovers the previous caseε → 0

Now it is a (one-way coupled) multi-timescale 
problem where

dα

dt
= ε G(α)

α = α(εt)



Mathematical Motivation

What if we make it even more interesting?

Recovers the original caseε → 0

Now it is a (two-way coupled) multi-timescale 
problem where the bifurcation “parameter” is 

simply a slowly varying dynamical variable of the 
system

du

dt
= F (u; α)

dα

dt
= ε G(α; u)



Mathematical Motivation

Rescale time

du

dt
= F (u; α)

dα

dt
= ε G(α; u)

t → ε−1/2t,
d

dt
→ ε1/2 d

dt

ε1/2 du

dt
= F (u; α)

dα

dt
= ε1/2G(α; u)



A Model Problem 



∇ · u = 0

1
Pr

(∂tu + u · ∇u) + ∇P = Ra T ẑ + ∆u

∂tT + u · ∇T = ∆T

S∂tη + n̂ · ∇T = 0 at z = η(x, y)

T = 1u = 0u = 0 T = 0
at z = η(x, y), at z = 0

Ra =
gα(Tb − Tm)H3

0

νκ

Pr =
ν

κ

S =
Lfusion

cp(Tb − Tm)

The Stefan Condition



Background State (Similarity Solution)

∂tT0 = ∂2
zT0 S∂tη0 = −∂zT0|z=η0

η0 =
√

4β2t + 1

1
S

=
√

πβErf(β) exp(β2) ≈ 2β2 if S # 1

T0 = 1 −
Erf(βz/η0)

Erf(β)
≈ 1 −

z

η0
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Put it all together...

ε = S−1/4 ! 1 Slow time evolution

∂t = ε2∂τ∂x = ikc + ε ∂X

Ra = Rac ≈ 1708

!u = ε A(τ, X)!Uc(z)eikcx + c.c.

T = 1 − z + ε A(τ, X)Θc(z)eikcx + c.c.

η = 1 + ε2 τ + ε3 Ξ(τ, X)eikcx + c.c.



We get something like the 
Ginzburg-Landau Equation

∂τ A = γτA + Ξ − |A|2A + ∂2
XA

∂τΞ = A

3
∫ 1
0 WcΘc dz

|∂zΘc|2z=1

≈ 3.747739γ =



du

dt
= F (u; α)

dα

dt
= 0

∂τA = µA − |A|2A + ∂2
XA

du

dt
= F (u; α)

dα

dt
= ε G(α)

∂τ A = γτA − |A|2A + ∂2
XA

∂τ A = γτA + Ξ − |A|2A + ∂2
XA

∂τΞ = A
du

dt
= F (u; α) dα

dt
= ε G(α; u)

These systems have been studied before

This system has some interesting new dynamics

Ginzburg-Landau (GL)

Dynamic GL1

Dynamic GL2



Purely Real, No Spatial Dependence 

∂τ A = γτA − A3
A ∼ eγτ2/2 for |A| " 1

A → ±√
γτ as τ → ∞

∂τ A = µA − A3 A ∼ eµτ for |A| " 1

A → ±√
µ as τ → ∞

For μ < 0, the solutions decay very rapidly

For τ < 0, the solutions also decay very rapidly



Linear, No Spatial Modulation 

∂τ A = γτA + Ξ − A3 ∂τΞ = A

A ∼
∫ ∞

0
ζ

1
γ exp

[
−

ζ2

2γ
± ζτ

]
dζ for |A| # 1

A →
Γ

(
1 + 1

γ

)

|τ | 1
γ +1

for τ " 0

A →
√

2πγ (γτ )
1
γ exp

[
γτ2

2

]
for τ " 0

For τ < 0, the solutions can grow algebraically.  
There is a morphological instability before there is a 

convective instability



Nonlinear, Spatial Modulation

One of the most surprising new 
features...

The “locked-in” phase function is 
strongly dependent on the initial 

conditions

A →
√

(γ + 2/3) τ eiψ0(X) as τ → ∞
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What about more complex patterns?



GL  
(Re = Blue, Im = Red)



(Re = Blue, Im = Red)
DGL-I 



DGL-II
(Re = Blue, Im = Red)
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Patterns freeze in 2D as well



Some Thoughts...

Even strongly nonlinear systems often pass though a time when 
the growth rate of the instability is comparable to the rate of 

evolution of the background.

Conditions in this early stage can have dramatic consequences for 
the long-time dynamics of the system.

The pattern can even lock in broken-symmetry states that would 
otherwise be unstable.

We’re hoping to set up an experiment with wax (or something) 
sometime soon.  

I’m always looking for other systems to apply these basic 
methods to…. 


