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Dynamo in a non-helical flow
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Weakly compressible isothermal flow, 

electrically conducting fluid, 

random driving force:

D

Dt
=

@

@t
+ ~u ¢ r ; ~B =r£ ~A ; ~J =r£ ~B=¹0 :



 Weak compressibility, | f |  0.09,  = / = const.

 : -correlated in time, single scale = ⅓(box size).

 Initial conditions:  ln  = 0,

: smoothed Gaussian random field, -correlated 
in space.

 Periodic box, size L,    2563 grid,    the Pencil Code.

Units: cs = 2/L =  = 0 = 1.

 Re  20 fixed, a range of Rm values.                   
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The fluctuation dynamo: urms & Brms versus time

Rm = 25
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Rm = 36

Rm = 133



Evolving kinetic & magnetic energy spectra, Rm  133
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Isosurfaces B = const, kinematic dynamo: 
intermittent filaments/ribbons

Rm  133                                                      Rm  196
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Green: B = 2.5 Brms Blue: B = 3 Brms



Power spectra or second-order moments miss 
the most important features of magnetic 
structures produced by the dynamo,

and hence provide little evidence for the 
physical nature of the dynamo action and its 
saturation.

Need for a quantitative morphological analysis.
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B = Brms B = 2Brms B = 2.5Brms

B = 3Brms B = 3.5Brms B = 4Brms

Which of these is the right/most informative picture?



Minkowski functionals
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Minkowski functionals (per unit volume) on a grid 
(Adler 1981)
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Shapefinders
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Filament: P = 0, F = 1;

Pancake: P = 1, F = 0;

Sphere: P = F = 0

Planarity   and   Filamentarity

P =
W ¡ T

W + T
; F =

L¡W

L+W
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(P, F) = (1.0,0.14)                 (0.05, 0.69)                       (0.016, 0.025)





Working range: B = Brms, 2 <  < 4
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Rm = 133



Results:   Rm scaling & evolution

 P and F  of the isosurfaces B = Brms ,

 f = fractional volume where B  Brms, 

 2    4, 

 averaged over 50 realizations.
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(P, F)-plane, kinematic state,  varying Rm
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F/P grows with Rm: 

magnetic filaments 
at RmÀ  1;

Consistent with 
Wilkin et al. (PRL, 2007)
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P and F in the saturated state

 P  const, F  const as Rm increases;
 asymptotic regime at Rm > 150  (???)
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(P, F)-plane, saturated state,  varying Rm

RmÀ  1:

 F, P  const   (?)

Magnetic filaments 
(rather than ribbons)



(P,   F) =

(a) (0.096,  0.81);

(b) (0.66,  0.23);

(c) (0.66,  0.12);

(d) (0.25,  0.66);

(e) (0.18,  0.43);

(f) (0.14,  0.23);

(g) (0.087,  0.073);

(h) (0.0036,  -0.0047).
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Fractional volume of magnetic structures vs Rm

Kinematic                                                                           Saturated

Slightly growing or constant                             Slightly decreasing or constant



21

Time variation of the fractional volume:
Rm = 133, saturation at t  250

Decreasing at the kinematic stage (intermittency), 

constant in the nonlinear state


