Convective dynamo in a stratified plane layer

Krzysztof Mizerski

Univ. Leeds, School of Maths, Woodhouse Lane, Leeds, UK

in colaboration with Steve Tobias

<u>Outline</u>

- 1. Introduction and the anelastic approximation
- 2. Weakly compressible convection at threshold
- 3. Influence of weak compressibility on stationary dynamo solutions at dynamo threshold
- 4. Derivation of nonlinear equations governing the evolution of rapidly rotating anelastic convection
- 5. Strongly compressible dynamo
- 6. Summary and conlusions

Governing equations

 $\frac{\partial \mathbf{u}}{\partial t} + \left(\mathbf{u} \cdot \nabla\right) \mathbf{u} = -\nabla \left(\frac{p}{\bar{\rho}}\right) + \mathcal{R}\sigma_m \sigma_\eta^{-1} s \hat{\mathbf{e}}_z - \tau^{1/2} \sigma_m \hat{\mathbf{e}}_z \times \mathbf{u} + M^2 \sigma_m \frac{1}{\bar{\rho}} \left(\nabla \times \mathbf{B}\right) \times \mathbf{B} + \sigma_m \frac{1}{\bar{\rho}} \nabla \cdot \widehat{\hat{\sigma}}$ $\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B}) + \nabla^2 \mathbf{B}$ $\sigma_{ij} = ar{
ho} \left(rac{\partial u_i}{\partial x_j} + rac{\partial u_j}{\partial x_i} - rac{2}{3}
abla \cdot \mathbf{u} \delta_{ij}
ight)$ $\nabla \cdot (\bar{\rho} \mathbf{u}) = 0 \qquad \qquad \nabla \cdot \mathbf{B} = 0$ $\left|\bar{\rho}\bar{T}\left|\frac{\partial s}{\partial t}+\mathbf{u}\cdot\nabla\left(\bar{s}+s\right)\right|=\sigma_{\eta}^{-1}\nabla\cdot\left[\lambda\left(\bar{\rho}\right)\bar{T}\nabla\left(\bar{s}+s\right)\right]-\frac{\theta M^{2}\sigma_{\eta}}{\mathcal{R}}\left(\nabla\times\mathbf{B}\right)^{2}-\frac{\theta\sigma_{\eta}}{2\mathcal{R}}\frac{1}{\bar{\rho}}\widehat{\hat{\sigma}}:\widehat{\hat{\sigma}}$ Braginsky & Roberts (1995) $\frac{p}{\bar{p}} = \frac{T}{\bar{T}} + \frac{\rho}{\bar{\rho}} \qquad s = \frac{1}{\gamma} \frac{p}{\bar{p}} - \frac{\rho}{\bar{\rho}}$ Jones et al. (2009)

Constant molecular conductivity

Constant molecular diffusivity

$$\frac{\operatorname{case} 1}{\bar{T} = 1 + \theta z, \quad \bar{\rho} = (1 + \theta z)^{m}} \qquad \qquad \bar{T} = 1 + \theta z + \epsilon \frac{\gamma - 1}{\theta(\gamma - 2)} \left[1 - (1 + \theta z)^{\gamma - 2/\gamma - 1} \right] \\
\bar{p} = -\frac{\mathcal{R}\sigma_{m}}{\sigma_{\eta}\theta(m+1)} (1 + \theta z)^{m+1} \qquad \qquad \text{and} \qquad \bar{\rho} = (1 + \theta z)^{1/\gamma - 1} + \epsilon \frac{1}{\theta(\gamma - 2)} \left[(1 + \theta z)^{2 - \gamma/\gamma - 1} - (\gamma - 1)^{2} \right] \quad \qquad \text{(6)} \\
\bar{s} = \frac{m + 1 - \gamma m}{\gamma^{\epsilon}} \ln (1 + \theta z) + \operatorname{const} \qquad \qquad \bar{p} = -\frac{\mathcal{R}\sigma_{m}(\gamma - 1)}{\sigma_{\eta}\theta\gamma} \left\{ (1 + \theta z)^{\gamma/\gamma - 1} + \epsilon \frac{\gamma(1 + \theta z)}{\theta(\gamma - 2)} \left[(1 + \theta z)^{2 - \gamma/\gamma - 1} - (\gamma - 1) \right] \right\} \\
= \frac{\operatorname{RSIC} \text{STATE}} \qquad \bar{s} = \frac{\gamma - 1}{\theta} (1 + \theta z)^{1/1 - \gamma} + \operatorname{const}$$

Parameters

$\mathcal{R}=rac{gd^{3}\epsilon}{\kappa u}$
$\sigma_m = \frac{\nu}{\eta}$
$\sigma_\eta = rac{\eta}{\kappa} \ T = 4\Omega^2 d^4$
$ \begin{array}{c} I = \frac{1}{p^2} \\ M = \frac{B_r d}{B_r d} \end{array} $
$ heta = rac{\sqrt{\mu arrho_r u \eta}}{T_0}$
m

Rayleigh number Prandtl number diffusivity ratio Taylor number Hartmann number temperature gradient in the basic state polytropic index

<u>scales:</u>

 \mathcal{D}

$$t_D = \frac{d^2}{\eta}t$$
 $\mathbf{x}_D = d\mathbf{x}$ $\mathbf{u}_D = \frac{\eta}{d}\mathbf{u}$

$$\epsilon = -\frac{d}{T_r} \left[\left(\frac{d\bar{T}}{dz} \right)_r + \frac{g}{c_p} \right] = -\frac{d}{c_p} \left(\frac{d\bar{s}}{dz} \right)_r \ll 1$$

$$-1 < \theta = \frac{\Delta T}{T_0} < 0$$
$$\nabla \cdot \mathbf{u} = -\frac{m\theta}{1+\theta z} u_z$$

The exact Boussinesq limit is obtained by simply setting $\theta=0$

The boundaries are assumed to be impermeabe, stress-free, perfectly conducting and isentropic

Weakly compressible ($|\theta| < 1$) convection at thereshold

$$\mathbf{u} = \hat{\mathbf{u}}(z) e^{i(k_1 x + k_2 y)} e^{\mu t} \qquad \qquad \hat{\mathbf{u}} = \hat{\mathbf{u}}^0 + \theta \hat{\mathbf{u}}^1 + O\left(\theta^2\right)$$

Assuming additionally rapid rotation $\tau^{-1/12} << \theta << 1$, and imposing the following BC:

$$\hat{u}_{z}|_{z=0,1} = 0$$
 $\hat{s}|_{z=0,1} = 0$ $\frac{d\hat{\xi}}{dz}\Big|_{z=0,1} = 0$ where $\begin{array}{c} \xi = \partial_{x}u_{y} - \partial_{y}u_{x} \text{ is the 'z' component of the vorticity} \end{array}$

leads to:

$$\mathcal{R}^0 = au^{2/3} ilde{\mathcal{R}}^0 \qquad k = au^{1/6} ilde{k} \quad ext{and} \qquad ilde{\mathcal{R}}^0 = rac{1}{ ilde{k}^2} \left[ilde{k}^6 + n^2 \pi^2
ight] \qquad \mathcal{R} pprox au^{2/3} ilde{\mathcal{R}}^0 + heta au^{2/3} ilde{\mathcal{R}}^1$$

case (1)

$$\tilde{\mathcal{R}}^{1} = -\frac{1}{2} (m-1) \tilde{\mathcal{R}}^{0}$$

$$\tilde{\mathcal{R}}^{1} = \frac{\gamma}{2 (\gamma-1)} \tilde{\mathcal{R}}^{0}$$

60th Birthday of Mike Proctor, Corsica, 2010

Boussinesq symmetry breaking (introduction of smaller length scales)

Case 1 (constant k)

Case 2 (constant κ)

Small downward shift: $\Delta z \approx -0.0056$

Upward shift: $\Delta z \approx 0.057$

Numerical linear results

Weakly compressible, rapidly rotating $\tau^{-1/12} << \theta << 1$ dynamo at threshold

This leads to:

$$\frac{\partial \mathbf{B}_{h}}{\partial t} = \frac{\partial}{\partial z} \left[\hat{\mathbf{e}}_{z} \times \langle \mathbf{u}' \times \mathbf{B}' \rangle \right] + \frac{\partial^{2} \mathbf{B}_{h}}{\partial z^{2}}$$

We expand all the depended variables inpowers of $\varepsilon^{1/2}$ and obtain an equation for the Fourier amplitude of the zeroth-order vertical velocity $w = \hat{w}e^{i\mathbf{k}\cdot\mathbf{x}}$:

$$\frac{\partial^2 \hat{w}^0}{\partial z^2} + \frac{m\theta}{1+\theta z} \frac{\partial \hat{w}^0}{\partial z} + \left[\tilde{\mathcal{R}}k^2 \left(1+\theta z\right)^{m-1} - k^6 - \frac{m\theta^2}{\left(1+\theta z\right)^2} \right] \hat{w}^0 = 0$$

which in the limit $\theta <<1$ has the same solution as the one obtained previously in the non-magnetic case

Weakly compressible, rapidly rotating $\tau^{-1/12} << \theta << 1$ dynamo at threshold

To exclude a uniform magnetic field we now assume the following:

$$\int B_{x,y} dz = 0$$

The average kinetic energy satisfies

$$T = T^{0} \left[1 + \theta \mathcal{D}_{2} \left(1 - \frac{\alpha^{2}}{\chi^{2}} \right) \right]$$

and α^2 , χ^2 depend on the planform of convective modes

• The constant D_2 typically has a different sign in cases 1 and 2.

• We do not study the stability of those solutions, however, the physical intuition suggests, in a compressible medium larger average kinetic energy (larger Rm) is necessery to maintain a stationary magnetic field, since copmpressibility tends to introduce smaller legth scales into the flow and thus enhance dissipative effects.

• The chosen scaling excludes the Lorentz force from dynamics at leading order, and hence the dynamo solutions are kinematic and valid only for small magnetic fields i.e. at dynamo threshold.

Magnetic spiral – the mean field solution

Rapidly rotating, anelastic convection – nonlinear regime

Introducing new scaling ($\varepsilon = \tau^{-1/6}$) (after Julien & Knobloch 1999):

$$\mathbf{x} = (\varepsilon x', \varepsilon y', z) \qquad t = \varepsilon^2 t'$$
$$\mathbf{u} = \varepsilon^{-1} \mathbf{u}' (\mathbf{x}_h, z, t)$$
$$s = S (z) + \varepsilon s' (\mathbf{x}_h, z, t)$$
$$\mathcal{R} = \varepsilon^{-4} \tilde{\mathcal{R}}$$

and assuming square planform of solutions:

 $[u_z, \omega_z, s] = [w(z), \xi(z), \mathfrak{s}(z)] e^{i\varpi t} (\cos kx + \cos ky) + c.c. + O(\varepsilon)$

$$[u_x, u_y] = \frac{1}{k} \left[-\sin ky, \sin kx \right] \xi(z) e^{i\varpi t} + c.c. + O(\varepsilon)$$

which results in vanishing of nonlinear terms in the Navier-Stokes equations

24 Sep 2010

Rapidly rotating, anelastic convection – nonlinear regime

and defining the entropy gradient $g(z) = \frac{1}{1+\theta z} - d_z \langle s \rangle_{x,y,t}$ we obtain:

$$d_{z}^{2}w + \frac{m\theta}{1+\theta z}d_{z}w + \left[\tilde{\mathcal{R}}k^{2}g\left(z\right)\frac{i\varpi/\sigma+k^{2}}{i\varpi+k^{2}/\left(1+\theta z\right)^{m}} - k^{2}\left(i\varpi/\sigma+k^{2}\right)^{2} - \frac{m\theta^{2}}{\left(1+\theta z\right)^{2}}\right]w = 0$$

$$d_{z}\left[g\left(z\right)\varsigma\left(w,z\right)\right] + \frac{\theta}{\left(1+\theta z\right)^{2}}g\left(z\right) = -\mathcal{V}\left(w,z\right) \qquad \text{with:} \qquad \int_{0}^{1}g\left(z\right)dz = -\Delta\bar{s} = \frac{1}{\theta}\ln\left(1+\theta\right)$$

where:

$$\begin{split} \varsigma\left(w,z\right) &= 1 + \frac{2k^2 \left|w\left(z\right)\right|^2}{\varpi^2 + k^4 / \left(1 + \theta z\right)^{2m}} \\ \mathcal{V}\left(w,z\right) &= \frac{2\theta}{\tilde{\mathcal{R}}} \left(1 + \theta z\right)^{m-1} \left[k^2 \left|w\right|^2 + \frac{\sigma^2}{\sigma^2 k^4 + \varpi^2} \left(\left|d_z w\right|^2 + \frac{m\theta}{1 + \theta z} d_z \left|w\right|^2 + \frac{m^2 \theta^2}{\left(1 + \theta z\right)^2} \left|w\right|^2\right)\right] \end{split}$$

The amplitude equation, in the small amplitude limit, reduces to the previously obtained equation in the linear regime !

2

Total convective heat flux

Nusselt number

Weakly nonlinear theory

Conductive heat flux in the Basic State

$$Nu = 1 + 2a^2rac{ ilde{\mathcal{R}}_{2,0}}{ ilde{\mathcal{R}}_{c,0}} + heta\left(m-1
ight)$$

 $Nu = 1 + 2a^2 \frac{\tilde{\mathcal{R}}_{2,0}}{\tilde{\mathcal{R}}_{c,0}} - \theta \frac{\gamma}{\gamma - 1}$

in Case 1,

in Case 2.

a is the amplitude of the perturbation

In case 2, for the same distance from criticality (i.e. R-R_c) the Nusselt number is greater for compressible convection (in case 1 only if m<1)

Nu – 1 vs the 'compensated' Rayleigh number in case 1, for m=1.4 and θ from 0 to –0.998

of Mike Proctor, Corsica, 2010

Numerical nonlinear results

The 'z'-dependence profiles of the vertical velocity for different values of the Rayleigh number and for

θ = 0, -0.2, -0.965, and -0.977 Rapidly rotating, convective dynamo for higher compressibilities

having:

$$w^{0} = \sum_{|\mathbf{k}|=k} e^{i\mathbf{k}\cdot\mathbf{x}}\hat{A}(t,\mathbf{k}) \mathcal{W}(z)$$

we may solve the following kinematic dynamo problem:

$$\frac{\partial B_{i}}{\partial t} = -2\frac{\partial}{\partial z}\left\{\mathcal{W}\left(z\right)\left(\mathcal{W}'\left(z\right) + \frac{m\theta}{1+\theta z}\mathcal{W}\right)\mathbb{M}_{ij}B_{j}\right\} + \frac{\partial^{2}B_{i}}{\partial z^{2}} = 0 + O\left(\theta^{2}\right)$$

where $^\prime$ denotes a derivative with respect to $^\prime z^\prime$ and

$$\mathbb{M} = \begin{bmatrix} -\alpha_{21} & -\alpha_{22} \\ \alpha_{11} & \alpha_{12} \end{bmatrix}; \qquad \qquad \alpha_{ij} = \sum_{|\mathbf{k}|=\mathbf{k}} \frac{k_i k_j}{k^6} \left| \hat{A}(t, \mathbf{k}) \right|^2;$$

The average kinetic energy is

$$T = \frac{1}{2} \left\langle \left(\mathbf{u}_{h}^{\prime 0} \right)^{2} + \left(w^{0} \right)^{2} \right\rangle_{C} = \frac{1}{2} \left[\frac{1}{k^{6}} \overline{\left(\mathcal{W}^{\prime} + \frac{m\theta}{1 + \theta z} \mathcal{W} \right)^{2}} + \overline{\mathcal{W}^{2}} \right] \sum_{|k|=k} \left| \hat{A} \left(\mathbf{k} \right) \right|^{2}$$

and the overbar indicates a vertical average.

For square planform a stationary dynamo solution has the same average kinetic energy as in the Boussinesq case studied by Soward (1974)

$$_{6}T = T^{0} + O\left(\theta^{2}\right)_{\text{Corsica, 2010}}$$

24 Sep 2010

Rapidly rotating, convective dynamo for higher compressibilities

The 'z'-dependence of the 'x' component of the mean magnetic field $\langle B \rangle_x$

The 'magnetic Reynolds number' (the average kinetic energy of the flow) vs the compressibility θ

Conclusions

- I. Depending on the k=const or κ =const formulation the critical Rayleigh number for convection in compressible case is greater or smaller then in Boussinesq case, respectively.
- II. Analytical stationary dynamo solutions were obtained. We reported that a stationary large scale magnetic field could be sustained by a compressible flow with either smaller or larger average kinetic energy than that, which would be necessary to sustain an analogous magnetic field by an incompressible flow.
- III. The results suggest that Rm_{crit} for dynamo action would typically be increased by compressibility since it introduces smaller length scales into the dynamics and thus enhances diffusive effects.

Disadvantages

- I. We do not perform higher order analysis in θ and τ and hence we do not know the actual critical Rayleigh number for dynamo action (order θ^4 and τ^8 would be necessary).
- II. We do not study the stability of obtained stationary dynamo solutions.

Weakly compressible, rapidly rotating $\tau^{-1/12} << \theta << 1$ dynamo at threshold

we postulate:

$$w^{0} = \sum_{|k|=k} e^{i\mathbf{k}\cdot\mathbf{x}} \hat{A}(t,\mathbf{k}) \left[\sin\left(\pi z\right) + \theta f(z)\right] + \theta \sum_{|k|=k} e^{i\mathbf{k}\cdot\mathbf{x}} \hat{C}(t,\mathbf{k}) \sin\left(\pi z\right) \quad \text{and } k \text{ is close to } k_{c}$$

which leads to:

(f(z) and h(z) are known functions)

$$\frac{\partial B_{i}}{\partial t} + 2\pi\Lambda\frac{\partial}{\partial z}\left\{\sin\left(2\pi z\right)\mathbb{M}_{ij}B_{j} + \theta\left[h\left(z\right)\mathbb{M}_{ij}B_{j} + 2\frac{\Xi}{\Lambda}\sin\left(2\pi z\right)\mathbb{N}_{ij}B_{j}\right]\right\} - \frac{\partial^{2}B_{i}}{\partial z^{2}} = 0 + O\left(\theta^{2}\right)$$

$$T = \frac{1}{2} \left\langle \left(\mathbf{u}_{h}^{\prime 0} \right)^{2} + \left(w^{0} \right)^{2} \right\rangle_{C} = \frac{\tilde{\mathcal{R}}^{0}}{4k^{4}} \left[\left(1 + \theta \mathcal{D}_{2} \right) \sum_{|\mathbf{k}|=\mathbf{k}} \left| \hat{A} \left(\mathbf{k} \right) \right|^{2} + 2\theta \sum_{|\mathbf{k}|=\mathbf{k}} \left(\hat{A} \left(\mathbf{k} \right) \hat{C}^{*} \left(\mathbf{k} \right) \right) \right] \doteq T^{0} \left[1 + \theta \left(\mathcal{D}_{2} + 2\mathcal{Q} \right) \right]$$

$$\Lambda = \frac{T^{0}}{\tilde{\mathcal{R}}^{0}}; \qquad \Xi = \frac{T_{ac}}{\tilde{\mathcal{R}}^{0}}; \qquad T^{0} = \frac{\tilde{\mathcal{R}}^{0}}{4k^{4}} \sum_{|\mathbf{k}|=\mathbf{k}} \left| \hat{A} \left(\mathbf{k} \right) \right|^{2}; \qquad T_{ac} = \frac{\tilde{\mathcal{R}}^{0}}{4k^{4}} \sum_{|\mathbf{k}|=\mathbf{k}} \left(\hat{A} \left(\mathbf{k} \right) \hat{C}^{*} \left(\mathbf{k} \right) \right); \qquad \mathcal{Q} = T_{ac}/T^{0}$$

$$\mathbb{M} = \begin{bmatrix} -\alpha_{21} & -\alpha_{22} \\ \alpha_{11} & \alpha_{12} \end{bmatrix}; \qquad \mathbb{N} = \begin{bmatrix} -\beta_{21} & -\beta_{22} \\ \beta_{11} & \beta_{12} \end{bmatrix}$$

$$\alpha_{ij} = \frac{1}{2k^6\Lambda} \left\langle \nabla A \otimes \nabla A \right\rangle_{ij} = \sum_{|\mathbf{k}|=k} \frac{k_i k_j}{k^2} q\left(\mathbf{k}\right); \qquad \qquad \beta_{ij} = \frac{1}{2k^6\Xi} \left\langle \left(\nabla A \otimes \nabla C\right)_S \right\rangle_{ij} = \sum_{|\mathbf{k}|=k} \frac{k_i k_j}{k^2} p\left(\mathbf{k}\right);$$

 $q\left(\mathbf{k}\right) = \frac{1}{2k^{4}\Lambda} \left| \hat{A}\left(\mathbf{k}\right) \right|^{2}; \qquad p\left(\mathbf{k}\right) = \frac{1}{2k^{4}\Xi} \left(\hat{A}\left(\mathbf{k}\right) \hat{C}^{*}\left(\mathbf{k}\right) \right) \qquad 18 / 17$

24 Sep 20