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Localised patterns - umbral dots

Bright points persist within the umbra of a sunspot

(AR 10786 imaged in the G Band, 8 June 2005)
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Magnetoconvection

Numerical simulations: Rayleigh–Bénard convection with a vertical magnetic field

R = 100000, Q = 1600

σ = 0.1, ζ = 0.2

stress-free, T fixed (lower)

radiative b.c. (upper)

8 × 8 × 1 stratified layer

density contrast approx 11.

blue = strong field

purple = weak field

A.M. Rucklidge, N.O. Weiss, D.P. Brownjohn, P.C. Matthews & M.R.E. Proctor, J. Fluid Mech. 419, 283–323 (2000)
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Localised magnetoconvection

R = 20 000, Q = 14 000, ζ = 0.1, σ = 1.0, L = 6.0

Temperature (deviation) & velocity: |B|2:

Subcritical finite-amplitude magnetoconvection noted by several previous authors:

N.O. Weiss Proc. Roy. Soc. Lond. (1966) – flux expulsion

F.H. Busse, J. Fluid Mech. 71 193–206 (1975):

“...thus finite amplitude onset of steady convection becomes possible at
Rayleigh numbers considerably below the values predicted by linear theory.”

Puzzle: convection cells persist even at very high field strengths
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Localised magnetoconvection
Strongly nonlinear localised states (‘convectons’) persist for strong fields.

dT
dz

|top for increasing Q at fixed R:

S.M. Blanchflower, Phys. Lett. A 261, 74–81 (1999); PhD thesis, University of Cambridge (1999)

What is the connection with linear (and weakly nonlinear) theory ??
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Part IB
Patterns in 1D continuum systems

MREP60, IESC Cargèse, September 2010 – p. 7/48



Pattern formation in the lab

Rayleigh–Bénard convection

Hot

Cold

Ideal Straight Rolls

Spiral Defect Chaos

S.W. Morris, E. Bodenschatz, D.S. Cannell
and G. Ahlers Phys. Rev. Lett. 71, 2026–
2029 (1993)
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Pattern formation in the lab

Faraday waves (2-frequency forcing, harmonic response)

Superlattice (‘down’) triangles 12-fold quasiperiodic pattern

A. Kudrolli, B. Pier & J.P. Gollub Physica D 123, 99–111 (1998)
M. Silber & M.R.E. Proctor Phys. Rev. Lett. 81, 2450–2453 (1998)
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Localised pattern formation
Granular and viscoelastic Faraday experiments

Granular ‘oscillons’
Viscoelastic ’holes’

P.B. Umbanhowar, F. Melo and H.L. Swinney, Nature 382, 793 (1996)
F. Merkt, R.D. Deegan, D. Goldman, E. Rericha, and H.L. Swinney, Phys. Rev. Lett. 98, 184501 (2004)
J.H.P. Dawes & S. Lilley, SIAM J. Appl. Dyn. Syst. 9, 238–260 (2010)
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Simple models for pattern formation
Suppose system state is described by a scalar variable w(x, t), x ∈ R.

‘Turing instability’ from trivial state to patterned state occurs.

Assume

translational symmetry x→ x+ δ

reflectional symmetry x→ −x
unbounded domain: −∞ < x <∞
(replaced with periodic boundaries (PBC) in practice)

Eigenfunctions: plane waves eikx; steady state instability at |k| = 1:

σ

r

k 2

Growth rate: σ = r − (1 − k2)2
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Swift–Hohenberg equation

∂tw = [r − (1 + ∂2
xx)2]w +N(w)

Nonlinearities:

−w3 – supercritical (‘forwards’) bifurcation

+bw2 − w3, +sw3 − w5 – subcritical (‘backwards’) bifurcations

Near bifurcation point, r = ε2µ, there is a band of unstable modes:

σ

k 21

εO(  )

Finite domain with PBC allows only a discrete set of modes

on R no centre manifold reduction is formally possible
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Ginzburg–Landau approach

Suppose the pattern-forming instability is weakly subcritical and symmetric:
w → −w.

Model equation: wt = [r − (1 + ∂2
xx)2]w + sw3 − w5

Asymptotic scalings for a weakly subcritical bifurcation:

w(x, t) = ε
(

A(X,T )eix + c.c.
)

+ ε2w2 + · · ·

s = ε2ŝ X = ε2x, T = ε4t, r = ε4r̂

At O(ε5) we deduce

AT = r̂A+ 4AXX + 3ŝA|A|2 − 10A|A|4

Now drop hats, and examine instability to perturbations ei`X .
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Modulational instability

Monotonic branch of modulated pattern bifurcates:
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– stationary fronts exist.
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when r = −0.675.
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Homoclinic snaking - finite domain
Return to Swift–Hohenberg equation: wt = [r − (1 + ∂2

xx)2]w + sw3 − w5.

Fix s = 2.0 and domain size L = 10π (PBC).
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Modulational instability produces localised states

Cross-link, or ‘ladder’ branches also exist
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Spatial dynamics

Think of x as ‘time’ variable and look for steady states:

0 = (r − 1)w − 2wxx − wxxxx −N(w)

4D reversible dynamical system: U = w, V = wx, W = wxx, Z = wxxx





U

V

W

Z





x

=





0 1 0 0

0 0 1 0

0 0 0 1

r − 1 0 −2 0









U

V

W

Z



 −N(U, V,W,Z)

Eigenvalues at bifurcation point are ±i, twice each:

r < 0 r = 0 r > 0

‘Hamiltonian–Hopf’ bifurcation
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Homoclinic tangle

Interpret as dynamics of a map on a Poincaré section:
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Homoclinic tangle

Interpret as dynamics of a map on a Poincaré section:
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Homoclinic snaking

0 = w + Pwxx + wxxxx − w2 + 0.3w3

P.D. Woods and A.R. Champneys Physica D 129, 147 (1999)
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Magnetoconvection: model problem

wt = [r − (1 + ∂2
xx)2]w − w3 −QB2w (1)

Bt = ζBxx + 1
ζ
(w2B)xx (2)

Symmetries:

w → −w (Boussinesq problem)

B → −B (direction of magnetic field)

Parameters:

r - reduced Rayleigh number r = R/Rc

Q - Chandrasekhar number ∝ |B0|2

〈B〉 = 1 after nondimensionalising

ζ - magnetic/thermal diffusivity ratio ζ = η/κ

Remark : We could do a weakly nonlinear analysis, writing
w = εw1 + · · ·, B = 1 + ε2B2 + · · ·, X = εx, T = ε2t

– the scaling introduced by Matthews & Cox.

P.C. Matthews & S.M. Cox Nonlinearity 13, 1293–1320 (2000)
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Magnetoconvection: model problem

Set ∂t ≡ 0. Integrate (2) twice:

ζP = B

(

ζ +
w2

ζ

)

where P is a constant of integration.

Re-arrange and integrate over the domain [0, L]:
〈

P
1+w2/ζ2

〉

= 〈B〉 def
= 1

Hence

1

P
=

〈

1

1 + w2/ζ2

〉

So P [w] measures the higher concentration of the large-scale mode in the region
outside the localised pattern. Substituting, we obtain

0 = [r − (1 + ∂2
xx)2]w − w3 − QP 2w

(1 + w2/ζ2)2
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Nonlocal Ginzburg–Landau eqn

0 = [r − (1 + ∂2
xx)2]w − w3 − QP 2w

(1 + w2/ζ2)2

Suppose ζ � 1

Introduce the long scales X = ζx, T = ζ2t.

Rescale: Q = ζ2q and r = ζ2µ.

Expand: w(x, t) = ζA(X,T ) sinx+O(ζ2), assuming A(X,T ) real.

Interpret spatial average as over both x ∈ [0, 2π] and X:

1
P

=
〈 〈

1
1+A2 sin2 x

〉

x

〉

X
=

〈

1√
1+A2

〉

X

Extract solvability condition by multiplying by sinx and integrating over x:

0 = µA+ 4AXX − 3A3 − qP 2A

(1 + A2)3/2
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Return to (w, B) equations

wt = [r − (1 + ∂2
xx)2]w − w3 −QB2w (1)

Bt = ζBxx + 1
ζ
(w2B)xx (2)
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Slanted snaking
J.H.P. Dawes, Localised pattern formation with a large-scale mode: slanted snaking. SIAM J. App. Dyn. Syst. 7, 186–206
(2008)

MREP60, IESC Cargèse, September 2010 – p. 22/48



Locations of saddle-nodes
Full magnetoconvection equations:

Toy model:
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Part II
Localised patterns in 1D coupled cell systems
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Example: juxtacrine cell signalling
Juxtacrine (cell-to-cell) signalling is important in embryonic development, e.g.
delta-notch signalling in zebrafish segmentation:

Between cells: delta activates notch

Within a cell: notch deactivates delta

Signalling may enhance differences between neighbouring cells, rather than
suppressing them.
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Example: juxtacrine cell signalling

Often leads to the formation of (periodic) spatial patterns and fronts:

M.R. Owen, J.A. Sherratt & H.J. Wearing, Developmental Biology 217, 54–61 (2000)
J.R. Collier, N.A.M. Monk, P.K. Maini & J.H. Lewis J. Theor. Biol. 183, 429–446 (1996)
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Example: juxtacrine cell signalling

... or localised patterns of activity:
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Model equation in 1D
‘Spatially discrete bistable Allen–Cahn equation’:

(u̇n) 0 = C(un+1 − 2un + un−1) + µun + 2su3
n − u5

n

Motivated by the discrete nonlinear Schrödinger equation:

iψ̇n + C(ψn+1 − 2ψn + ψn−1) + 2sψn|ψn|2 − ψn|ψn|4 = 0

after substituting ψn(t) = un exp(−iµt).

describes dynamics of a periodic
array of optical cavities driven by a
coherent light source:

A.V. Yulin, A.R. Champneys & D.V. Skryabin, Discrete cavity solitons due to saturable nonlinearity Phys. Rev. A 78, 011804
(2008)
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Localised states in 1D
Localised states exist on snaking curves:

site-centred bond-centred

C.R.N. Taylor & J.H.P. Dawes, Snaking and isolas of localized states in bistable discrete lattices. Preprint (2009)
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Digression into 2D
Natural extensions of 1D couplings are:

∆+un m = un+1 m + un−1 m + un m+1 + un m−1 − 4un m

∆×un m = un+1 m+1 + un−1 m+1 + un+1 m−1 + un−1 m−1 − 4un m

⇒ Allen–Cahn equation generalises to

(u̇nm) 0 = C+∆+unm + C×∆×unm + µunm + 2su3
nm − u5

nm

In 2D there are three types of localised state:

bond-centred
site-centred hybrid
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Digression into 2D
Snaking of bond-centred states for C+ = 0.1, C× = 0:

Snaking of bond-centred states for C+ = 0.2, C× = 0:

Lines are predictions from 1D fronts: red–along lattice; blue–diagonal.

C.R.N. Taylor & J.H.P. Dawes, Snaking and isolas of localized states in bistable discrete lattices. Preprint (2009)
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Digression: isolas and switchbacks
Isolas exist at small C+ and collide with the snake to form downward twists –
‘switchbacks’; C+ = 0.19, 0.21:

...and then detach from snake as C+ increases further; C+ = 0.27, 0.28:

Attachment/detachment occurs over very small intervals in C+, ∼ 10−3.
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Part III
From discrete to continuous
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From discrete to continuous
Is there any connection between discrete coupled-cell systems and PDEs
such as Swift–Hohenberg?

What is the ‘continuum limit’ of the coupled-cell system?

u̇n = C(un+1 − 2un + un−1) + µun + 2su3
n − u5

n

Answer:

ut = uxx + µu+ 2su3 − u5
(1)

i.e. no snaking!

But is it possible to capture some ‘leading-order correction’ to (1) that sheds
light on the limiting process C−1 ≡ h2 → 0 and shows how the snaking
disappears?

Need to examine some kind of long-wavelength approximation

P.G. Kevrekidis, I.G. Kevrekidis, A.R. Bishop & E.S. Titi, Phys. Rev. E 65, 046613 (2002)
P. Rosenau, Phys. Lett. A 311, 39–52 (2003) ; Phys. Rev. B 36, 5868–5876 (1987)
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Well, maybe

First guess (not so good), Taylor expansions:

Suppose there exists a continuum field u(x, t) such that u(nh, t) = un(t).
Then we have (′ ≡ p/∂z):

un+1 = un + hu′

n +
h2

2
u′′

n +
h3

6
u′′′

n +
h4

24
u(4)

n +O(h5)

un−1 = un − hu′

n +
h2

2
u′′

n − h3

6
u′′′

n +
h4

24
u(4)

n +O(h5)

which implies

h−2(un+1 − 2un + un−1) = u′′

n +
h2

12
u(4)

n +O(h3)

So the PDE to this order is

ut = uxx +
h2

12
uxxxx + µu+ 2su3 − u5
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Dispersion relations

ut = uxx +
h2

12
uxxxx + µu+ 2su3 − u5

This PDE is ill-posed because high wavenumbers grow unboundedly!

Linearise, put u ∼ eσt+ikx:
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h4

360
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dashed: h = 0.1

solid: h = 10.0

Nothing qualitatively new compared to 2nd
order eqn

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−4

−3

−2

−1

0

 k

σ
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Full dispersion relation

Note that, from the Taylor series arguments we have

un+1 ≡ u(nh+ h) = exp(hD)un

un−1 ≡ u(nh− h) = exp(−hD)un

where D ≡ ∂/∂z,

so that

h−2(un+1 − 2un + un−1) =
2

h2
(cosh(hD) − 1)un =: L(D)un.

Now, Fourier transforming by sending D → ik, we have

∂tû(k, t) = L̂(k)û(k, t) + F̂ (u)

where

L̂(k) = − 4
h2 sin2

(

hk
2

)
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Full dispersion relation

L̂(k) = − 4
h2 sin2

(

hk
2

)

−30 −20 −10 0 10 20 30
−4

−2

0

 k

σ

L̂(k) is a pseudo-differential operator.

Attempt to simplify to a PDE by finding rational or polynomial approximations
for small |k|.
2 obvious kinds of approximation

Padé approximants
Weierstrass product representation
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Padé approximants

Lowest-order Padé approximants (2p, 2q) to sin2(x) are

P(2,2)(x) =
x2

1 + x2/3

P(4,2)(x) =
x2 − x4/5

1 + 2
15
x2

P(4,4)(x) =
x2 − 10

63
x4

1 + 11
63
x2 + 13

945
x4

P(6,2)(x) =
x2 − 11

42
x4 + 13

630
x6

1 + 1
14
x2
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−6

−5

−4
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−1

0

1

 k

σ

Plot shows σ = µ− 4/h2P(2p,2q)(hk/2) for µ = 0, h = 1.

None of these capture turning point at k = 2π/h well.
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Weierstrass product
Recall the infinite product representation of sin:

L̂(k) = − 4

h2
sin2

(

hk

2

)

= −k2
∞
∏

n=1

[

1 −
(

hk

2πn

)2
]2

leads to the 6th order approximation given by keeping only the n = 1 term:

L̂1(k) := −k2

[

1 −
(

hk

2π

)2
]2

only the n = 1 term:

only the n = 1 and n = 2 terms:
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PDE approximation

Turn L̂1(k) back into a PDE:

ut =

[

1 +

(

h

2π

)2
∂2

∂x2

]2

uxx + µu+ 2su3 − u5

‘Swift–Hohenberg plus 2 more derivatives’.

Let d = h/(2π) for convenience.

Properties of this PDE:

Limit d→ 0 is singular.

d can be set to 1 by the useful rescaling:

µ = µ̃d−2, s = s̃d−1, u = ũd−1/2, t = T̃ d2, x = X̃d

First integral (let F (u) = µ
2
u2 + s

2
u4 − 1

6
u6):

H =
1

2
(ux)2 + 2d2

(

u(3)ux − 1

2
(uxx)2

)

+ d4

(

u(5)ux − u(4)uxx +
1

2

(

u(3)
)2

)

+ F (u)
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Weakly nonlinear analysis

Neutral modes at k = 0 and k = 2π suggest a mode interaction.

Usual multiple-scales expansion for small amplitude, mildly subcritical
instabilities:

u = ε
(

A(X,T ) +B(X,T )eix + c.c.
)

+ ε2u2 + · · ·

where

µ = ε4µ̃, s = ε2s̃, T = ε4t, X = ε2x

gives, at O(ε5), a pair of amplitude equations for A, B (now assumed real):

AT = AXX + µA+ 2sA3 −A5 + 12sAB2 − 20A3B2 − 30AB4

BT = 4BXX + µB + 12sB3 − 20B5 + 12sBA2 − 10BA4 − 60B3A2
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Weakly nonlinear analysis
Three kinds of constant solution:

A 6= 0, B = 0: flat homogeneous state

B 6= 0, A = 0: periodic pattern - ‘discretisation effect’

AB 6= 0: mixed mode

On constant solutions the first integral becomes (at this order)

H =
µ

2
A2 +

s

2
A4 − 1

6
A6 + µB2 + 3sB4 − 10

3
B6 + 6sA2B2 − 5A4B2 − 15A2B4

Maxwell points of
equal H on the differ-
ent constant solution
branches exist:
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Fronts near the Maxwell points

Three kinds of fronts:

zero–mixed mode
(a below)

mixed-mode–flat (c below)

zero–flat: not shown, but ‘as
normal’, as in the 2nd order
ODE obtained when d = 0.
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Snaking 1/2

Two (halves of) fat snakes
twist around the

zero–mixed-mode, and

flat–mixed-mode

Maxwell points
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Snaking 2/2
Snake around the zero–flat Maxwell point is ‘thin’:
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Varying d in a finite domain
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As d increases
twists pinch-off in
saddle-node bifurcations
We return to the
monotonic front of the 2nd
order ‘limiting case’

As d decreases, snake broad-
ens rapidly

-0.800
-0.775

-0.750
-0.725

-0.700
-0.675

-0.650
-0.625

-0.600

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

µ

a
b

c
d

e

-0.780 -0.770 -0.760 -0.750 -0.740 -0.730

0.0

2.5

5.0

7.5

10.0

12.5

d

µ
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Summary

An additional large-scale mode reinforces the existence of stable (1D)
localised states. Novel analysis in the limit ζ � 1.

Many similarities exist between snaking in continuum systems such as
Swift–Hohenberg and discrete systems.

Lots to be done in 2D (and 3D!) still.

Continuum limit is problematic and singular
Nice 6th order model equation that preserves variational structure
In a finite domain, 6th order model equation provides a smooth path
back to the 2nd order equation as d→ ∞ (!!??) and the discretisation
effects ‘wash out’ to scales larger than the domain.
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