Localised Patterns in Continuum and Coupled-Cell Systems

Jonathan Dawes

Department of Mathematical Sciences University of Bath

Outline

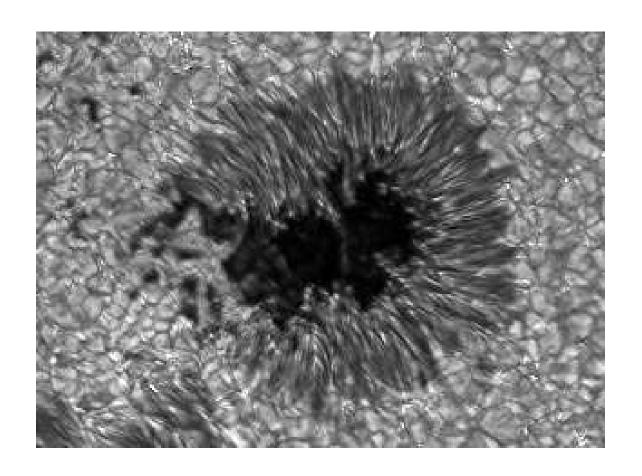
- Part IA Magnetoconvection and convectons
- Part IB Localised patterns in 1D continuum systems
 - the plain vanilla case
 - a new slant
- Part II Localised patterns in 1D coupled cell systems
- Part III From discrete to continuous
 - Model 6th order equation
 - Bifurcationology

J.H.P. Dawes, The emergence of a coherent structure for coherent structures: localized states in nonlinear systems. *Phil. Trans. Roy. Soc.* **368**, 3519–3534 (2010)

Special Issue: 'Visions of the future for the Royal Society's 350th anniversary year'.

Localised patterns - umbral dots

Bright points persist within the umbra of a sunspot



(AR 10786 imaged in the G Band, 8 June 2005)

Magnetoconvection

Numerical simulations: Rayleigh-Bénard convection with a vertical magnetic field

$$R = 100000, Q = 1600$$

$$\sigma = 0.1, \zeta = 0.2$$

stress-free, T fixed (lower)

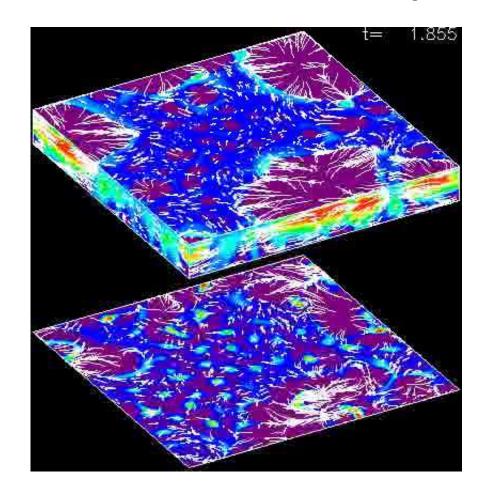
radiative b.c. (upper)

 $8 \times 8 \times 1$ stratified layer

density contrast approx 11.

blue = strong field

purple = weak field



A.M. Rucklidge, N.O. Weiss, D.P. Brownjohn, P.C. Matthews & M.R.E. Proctor, J. Fluid Mech. 419, 283–323 (2000)

Localised magnetoconvection

$$R = 20\,000, Q = 14\,000, \zeta = 0.1, \sigma = 1.0, L = 6.0$$

Temperature (deviation) & velocity:

 $|{\bf B}|^2$:



Subcritical finite-amplitude magnetoconvection noted by several previous authors:

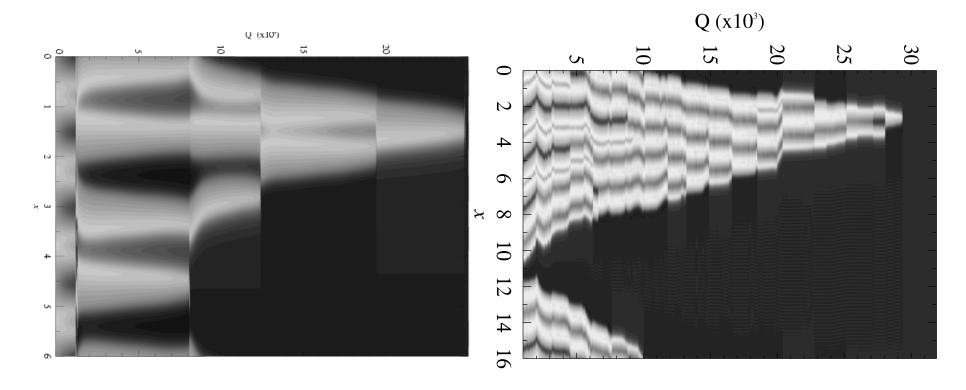
- N.O. Weiss Proc. Roy. Soc. Lond. (1966) flux expulsion
- F.H. Busse, J. Fluid Mech. 71 193–206 (1975):

"...thus finite amplitude onset of steady convection becomes possible at Rayleigh numbers considerably below the values predicted by linear theory."

Puzzle: convection cells persist even at very high field strengths

Localised magnetoconvection

- Strongly nonlinear localised states ('convectors') persist for strong fields.
- $\frac{dT}{dz}|_{\text{top}}$ for increasing Q at fixed R:



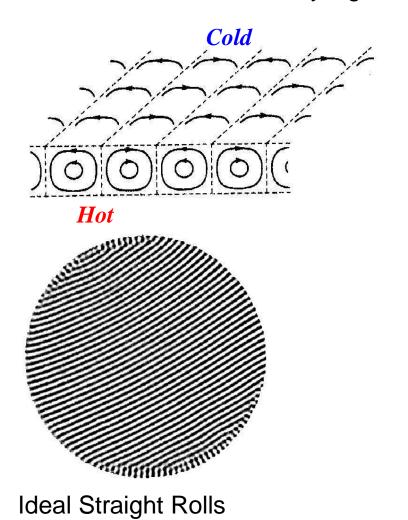
S.M. Blanchflower, *Phys. Lett.* A **261**, 74–81 (1999); PhD thesis, University of Cambridge (1999)

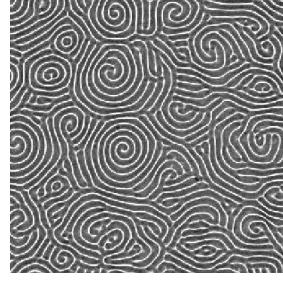
What is the connection with linear (and weakly nonlinear) theory ??

Part IB Patterns in 1D continuum systems

Pattern formation in the lab

Rayleigh-Bénard convection



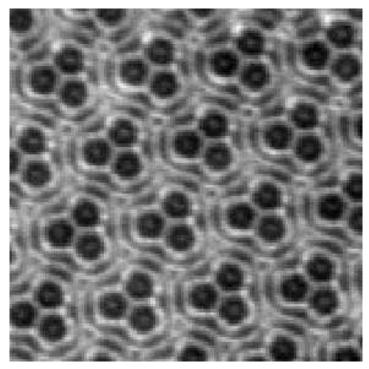


Spiral Defect Chaos

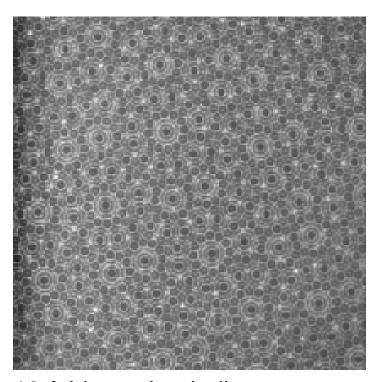
S.W. Morris, E. Bodenschatz, D.S. Cannell and G. Ahlers *Phys. Rev. Lett.* **71**, 2026–2029 (1993)

Pattern formation in the lab

Faraday waves (2-frequency forcing, harmonic response)



Superlattice ('down') triangles



12-fold quasiperiodic pattern

A. Kudrolli, B. Pier & J.P. Gollub *Physica* D **123**, 99–111 (1998)
M. Silber & M.R.E. Proctor *Phys. Rev. Lett.* **81**, 2450–2453 (1998)

Localised pattern formation

Granular and viscoelastic Faraday experiments

Granular 'oscillons'

Viscoelastic 'holes'

P.B. Umbanhowar, F. Melo and H.L. Swinney, *Nature* **382**, 793 (1996)
F. Merkt, R.D. Deegan, D. Goldman, E. Rericha, and H.L. Swinney, *Phys. Rev. Lett.* **98**, 184501 (2004)
J.H.P. Dawes & S. Lilley, *SIAM J. Appl. Dyn. Syst.* **9**, 238–260 (2010)

Simple models for pattern formation

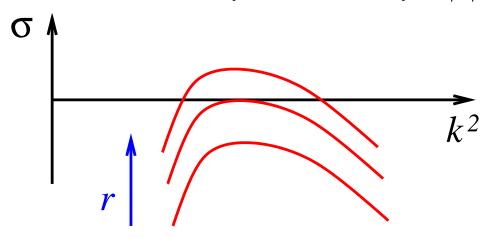
Suppose system state is described by a scalar variable w(x,t), $x \in \mathbb{R}$.

'Turing instability' from trivial state to patterned state occurs.

Assume

- translational symmetry $x \to x + \delta$
- **p** reflectional symmetry $x \rightarrow -x$
- unbounded domain: $-\infty < x < \infty$ (replaced with periodic boundaries (PBC) in practice)

Eigenfunctions: plane waves e^{ikx} ; steady state instability at |k| = 1:



Growth rate: $\sigma = r - (1 - k^2)^2$

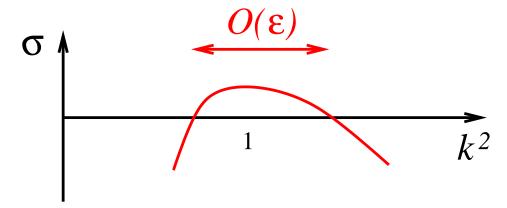
Swift-Hohenberg equation

$$\partial_t w = [r - (1 + \partial_{xx}^2)^2]w + N(w)$$

Nonlinearities:

- $-w^3$ supercritical ('forwards') bifurcation
- $-bw^2-w^3$, $+sw^3-w^5$ subcritical ('backwards') bifurcations

Near bifurcation point, $r = \varepsilon^2 \mu$, there is a band of unstable modes:



- Finite domain with PBC allows only a discrete set of modes
- lacksquare on $\mathbb R$ no centre manifold reduction is formally possible

Ginzburg-Landau approach

Suppose the pattern-forming instability is weakly subcritical and symmetric: $w \to -w$.

Model equation:
$$w_t = [r - (1 + \partial_{xx}^2)^2]w + sw^3 - w^5$$

Asymptotic scalings for a weakly subcritical bifurcation:

$$w(x,t) = \varepsilon \left(A(X,T)e^{ix} + c.c. \right) + \varepsilon^2 w_2 + \cdots$$

$$s = \varepsilon^2 \hat{s}$$
 $X = \varepsilon^2 x$, $T = \varepsilon^4 t$, $r = \varepsilon^4 \hat{r}$

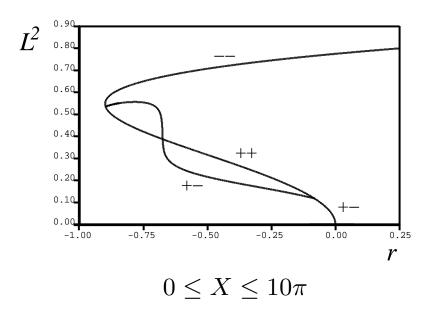
At $O(\varepsilon^5)$ we deduce

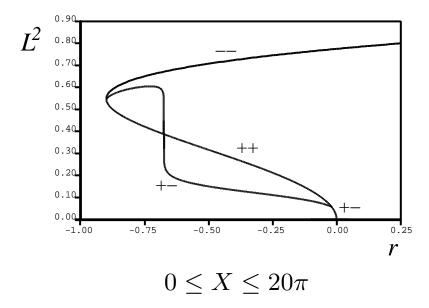
$$A_T = \hat{r}A + 4A_{XX} + 3\hat{s}A|A|^2 - 10A|A|^4$$

Now drop hats, and examine instability to perturbations $e^{i\ell X}$.

Modulational instability

Monotonic branch of modulated pattern bifurcates:





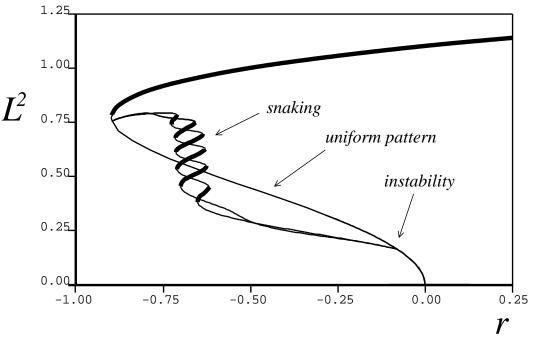
First integral ('energy'): $E = \frac{r}{2}A^2 + 2(A_X)^2 + \frac{3s}{4}A^4 - \frac{5}{3}A^6$

Maxwell point at $r = r_{mx}$, defined by $E|_{A=0} = E|_{A=A_0^+}$ – stationary fronts exist.

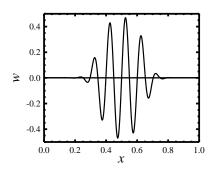
Maxwell point: $E|_{A=0} = E|_{A=A_0^+}$ when r = -0.675.

Homoclinic snaking - finite domain

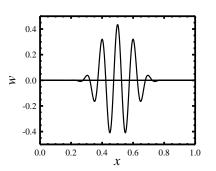
Return to Swift-Hohenberg equation: $w_t = [r - (1 + \partial_{xx}^2)^2]w + sw^3 - w^5$. Fix s = 2.0 and domain size $L = 10\pi$ (PBC).



Odd:



Even:



- Modulational instability produces localised states
- Cross-link, or 'ladder' branches also exist

Spatial dynamics

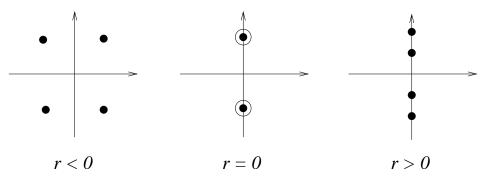
Think of x as 'time' variable and look for steady states:

$$0 = (r-1)w - 2w_{xx} - w_{xxx} - N(w)$$

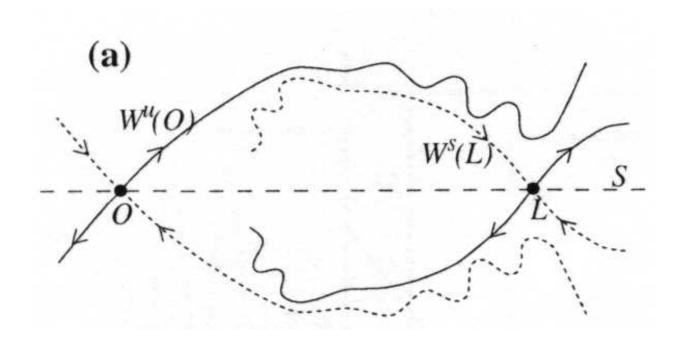
4D reversible dynamical system: U=w, $V=w_x$, $W=w_{xx}$, $Z=w_{xxx}$

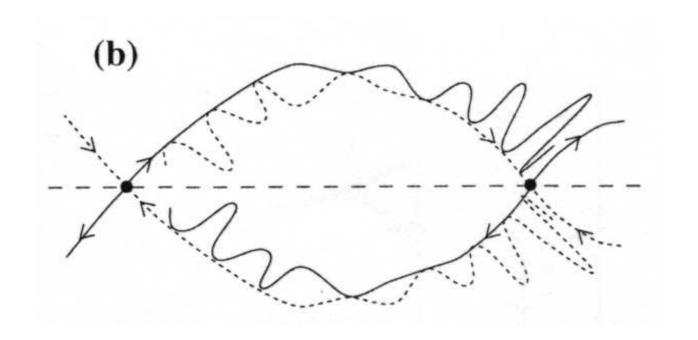
$$\begin{pmatrix} U \\ V \\ W \\ Z \end{pmatrix}_{x} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ r-1 & 0 & -2 & 0 \end{pmatrix} \begin{pmatrix} U \\ V \\ W \\ Z \end{pmatrix} - N(U, V, W, Z)$$

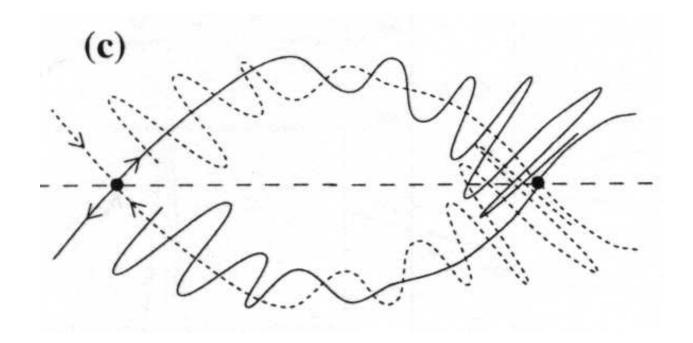
Eigenvalues at bifurcation point are $\pm i$, twice each:

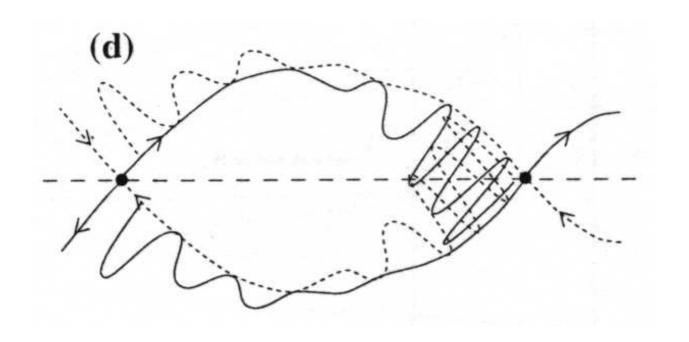


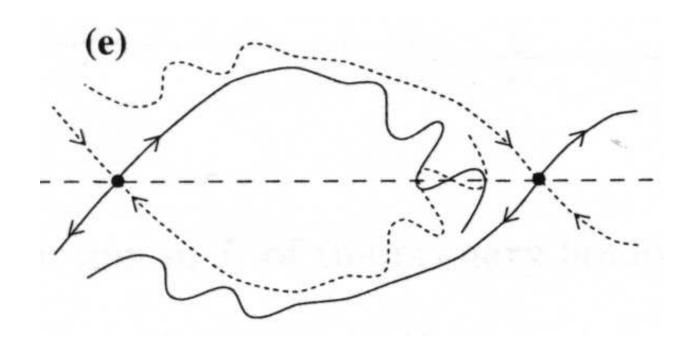
'Hamiltonian-Hopf' bifurcation

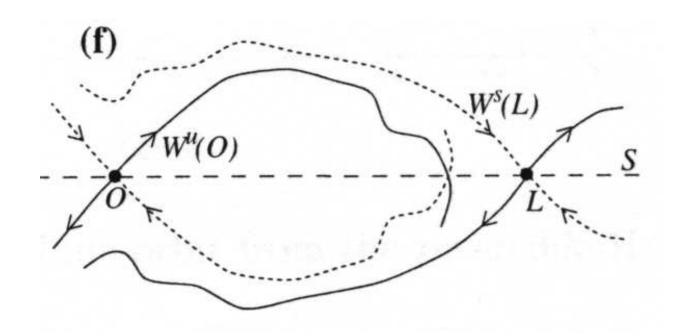




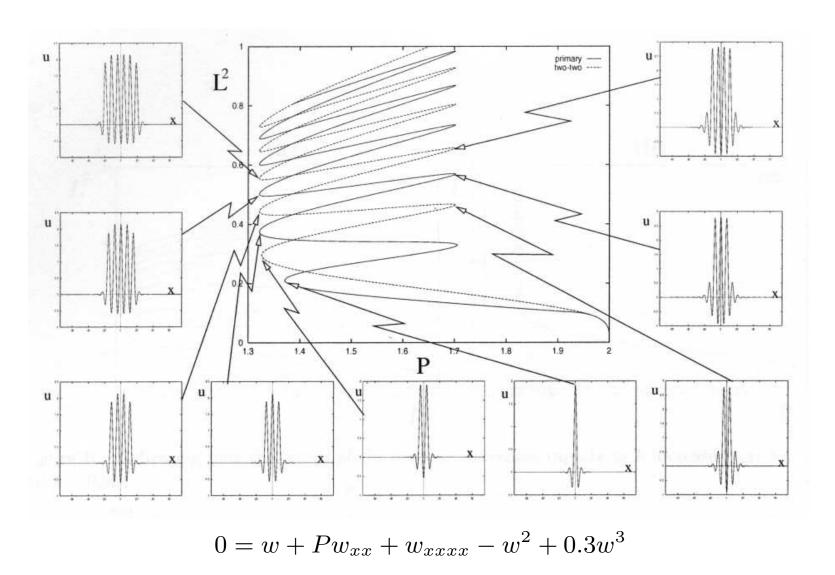








Homoclinic snaking



P.D. Woods and A.R. Champneys *Physica* D **129**, 147 (1999)

Magnetoconvection: model problem

$$w_t = [r - (1 + \partial_{xx}^2)^2]w - w^3 - QB^2w \tag{1}$$

$$B_t = \zeta B_{xx} + \frac{1}{\zeta} (w^2 B)_{xx} \tag{2}$$

Symmetries:

 $- w \rightarrow -w$ (Boussinesq problem)

■ B → -B (direction of magnetic field)

Parameters:

• r - reduced Rayleigh number $r = R/R_c$

9 Q - Chandrasekhar number $\propto |B_0|^2$

• ζ - magnetic/thermal diffusivity ratio $\zeta = \eta/\kappa$

Remark: We could do a weakly nonlinear analysis, writing

$$w = \varepsilon w_1 + \cdots, \qquad B = 1 + \varepsilon^2 B_2 + \cdots, \qquad X = \varepsilon x, \qquad T = \varepsilon^2 t$$

- the scaling introduced by Matthews & Cox.

P.C. Matthews & S.M. Cox Nonlinearity 13, 1293-1320 (2000)

Magnetoconvection: model problem

Set $\partial_t \equiv 0$. Integrate (2) twice:

$$\zeta P = B\left(\zeta + \frac{w^2}{\zeta}\right)$$

where P is a constant of integration.

Re-arrange and integrate over the domain [0, L]:

$$\left\langle \frac{P}{1+w^2/\zeta^2} \right\rangle = \left\langle B \right\rangle \stackrel{\text{def}}{=} 1$$

Hence

$$\frac{1}{P} = \left\langle \frac{1}{1 + w^2/\zeta^2} \right\rangle$$

So P[w] measures the higher concentration of the large-scale mode in the region *outside* the localised pattern. Substituting, we obtain

$$0 = [r - (1 + \partial_{xx}^{2})^{2}]w - w^{3} - \frac{QP^{2}w}{(1 + w^{2}/\zeta^{2})^{2}}$$

Nonlocal Ginzburg-Landau eqn

$$0 = [r - (1 + \partial_{xx}^{2})^{2}]w - w^{3} - \frac{QP^{2}w}{(1 + w^{2}/\zeta^{2})^{2}}$$

- **Suppose** $\zeta \ll 1$
- Introduce the long scales $X = \zeta x$, $T = \zeta^2 t$.
- Problem Rescale: $Q = \zeta^2 q$ and $r = \zeta^2 \mu$.
- **•** Expand: $w(x,t) = \zeta A(X,T) \sin x + O(\zeta^2)$, assuming A(X,T) real.

Interpret spatial average as over both $x \in [0, 2\pi]$ and X:

$$\frac{1}{P} = \left\langle \left\langle \frac{1}{1 + A^2 \sin^2 x} \right\rangle_X \right\rangle_X = \left\langle \frac{1}{\sqrt{1 + A^2}} \right\rangle_X$$

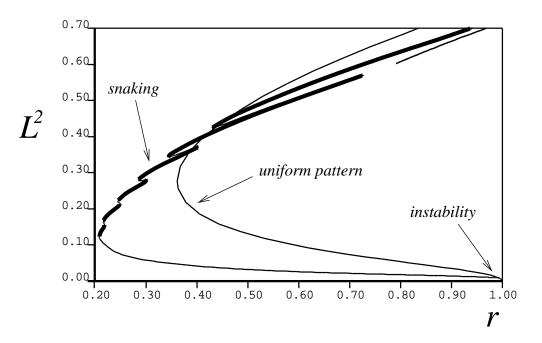
Extract solvability condition by multiplying by $\sin x$ and integrating over x:

$$0 = \mu A + 4A_{XX} - 3A^3 - \frac{qP^2A}{(1+A^2)^{3/2}}$$

Return to (w, B) equations

$$w_t = [r - (1 + \partial_{xx}^2)^2]w - w^3 - QB^2w \tag{1}$$

$$B_t = \zeta B_{xx} + \frac{1}{\zeta} (w^2 B)_{xx} \tag{2}$$

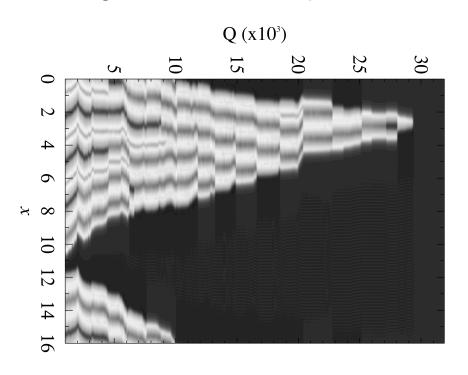


Slanted snaking

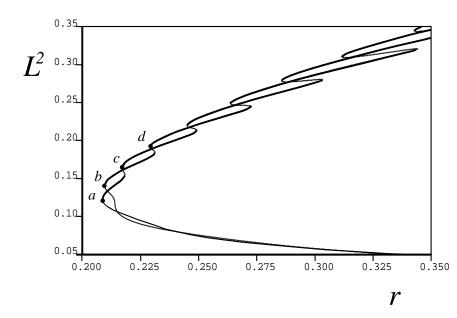
J.H.P. Dawes, Localised pattern formation with a large-scale mode: slanted snaking. SIAM J. App. Dyn. Syst. 7, 186–206 (2008)

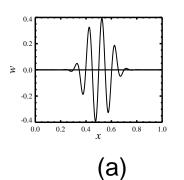
Locations of saddle-nodes

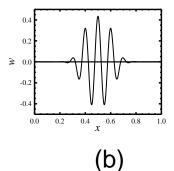
Full magnetoconvection equations:

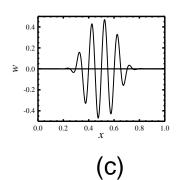


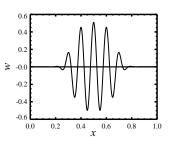
Toy model:







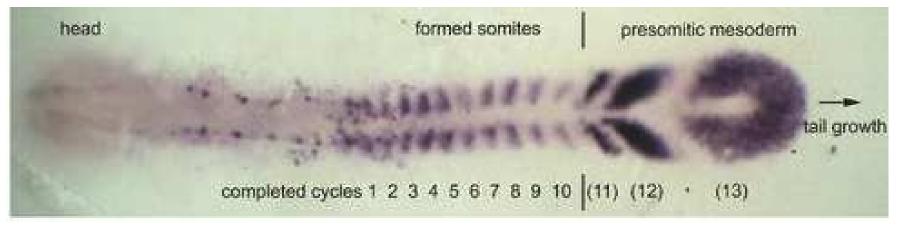




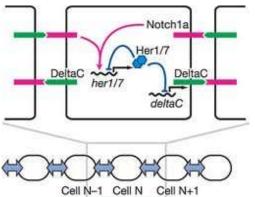
(d)

Example: juxtacrine cell signalling

Juxtacrine (cell-to-cell) signalling is important in embryonic development, e.g. delta-notch signalling in zebrafish segmentation:



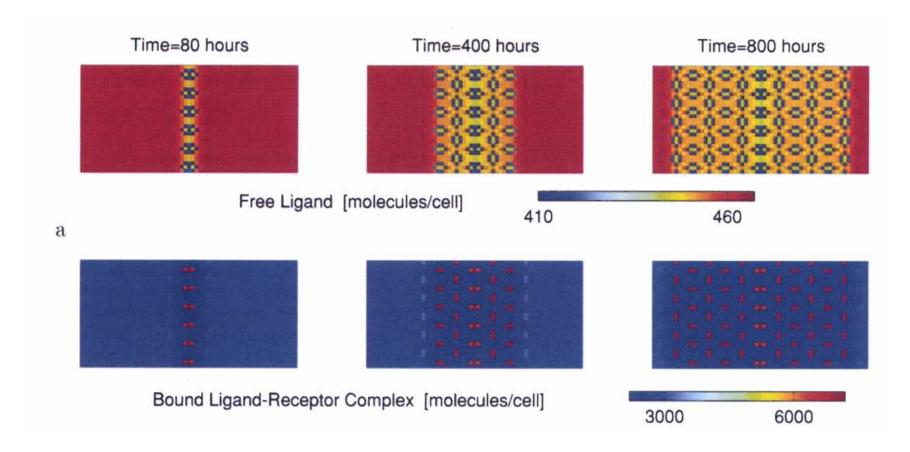
- Between cells: delta activates notch
- Within a cell: notch deactivates delta



Signalling may enhance differences between neighbouring cells, rather than suppressing them.

Example: juxtacrine cell signalling

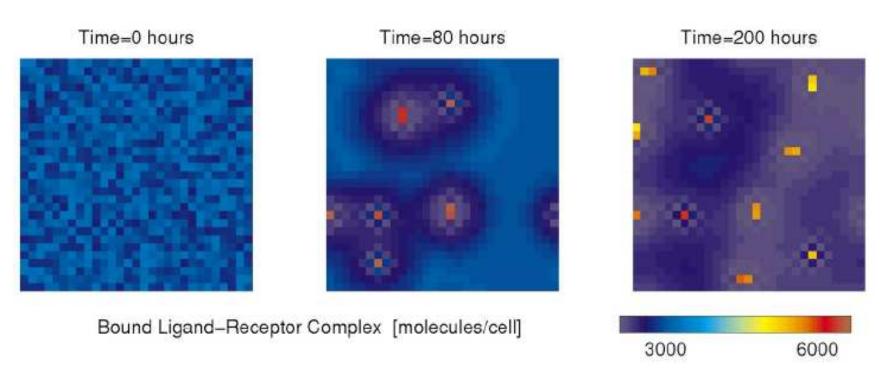
Often leads to the formation of (periodic) spatial patterns and fronts:



M.R. Owen, J.A. Sherratt & H.J. Wearing, *Developmental Biology* **217**, 54–61 (2000) J.R. Collier, N.A.M. Monk, P.K. Maini & J.H. Lewis *J. Theor. Biol.* **183**, 429–446 (1996)

Example: juxtacrine cell signalling

... or localised patterns of activity:



Model equation in 1D

'Spatially discrete bistable Allen–Cahn equation':

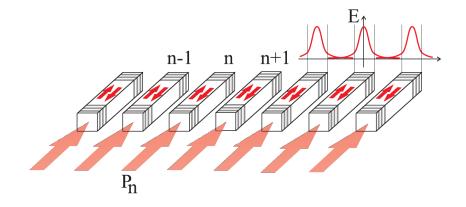
$$(\dot{u}_n) \qquad 0 = C(u_{n+1} - 2u_n + u_{n-1}) + \mu u_n + 2su_n^3 - u_n^5$$

Motivated by the discrete nonlinear Schrödinger equation:

$$i\dot{\psi}_n + C(\psi_{n+1} - 2\psi_n + \psi_{n-1}) + 2s\psi_n |\psi_n|^2 - \psi_n |\psi_n|^4 = 0$$

after substituting $\psi_n(t) = u_n \exp(-i\mu t)$.

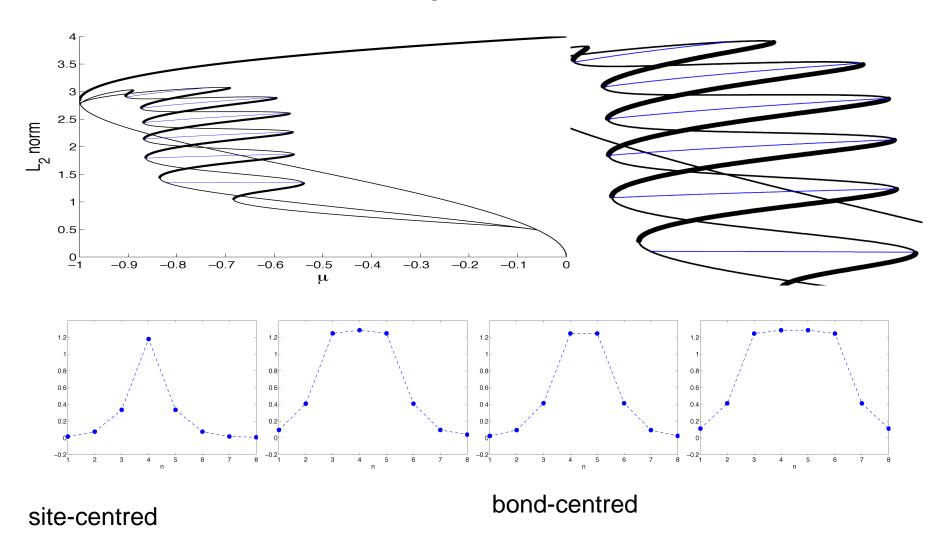
describes dynamics of a periodic array of optical cavities driven by a coherent light source:



A.V. Yulin, A.R. Champneys & D.V. Skryabin, Discrete cavity solitons due to saturable nonlinearity *Phys. Rev.* A **78**, 011804 (2008)

Localised states in 1D

Localised states exist on snaking curves:



C.R.N. Taylor & J.H.P. Dawes, Snaking and isolas of localized states in bistable discrete lattices. Preprint (2009)

Digression into 2D

Natural extensions of 1D couplings are:

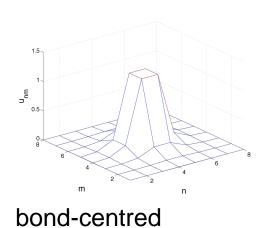
$$\Delta^{+}u_{n\,m} = u_{n+1\,m} + u_{n-1\,m} + u_{n\,m+1} + u_{n\,m-1} - 4u_{n\,m}$$

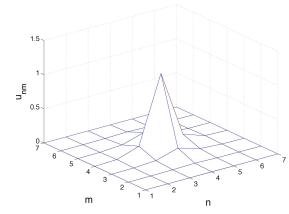
$$\Delta^{\times}u_{n\,m} = u_{n+1\,m+1} + u_{n-1\,m+1} + u_{n+1\,m-1} + u_{n-1\,m-1} - 4u_{n\,m}$$

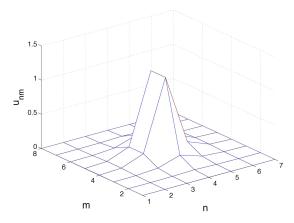
→ Allen–Cahn equation generalises to

$$(\dot{u}_{nm}) \ 0 = C^{+} \Delta^{+} u_{nm} + C^{\times} \Delta^{\times} u_{nm} + \mu u_{nm} + 2s u_{nm}^{3} - u_{nm}^{5}$$

In 2D there are three types of localised state:





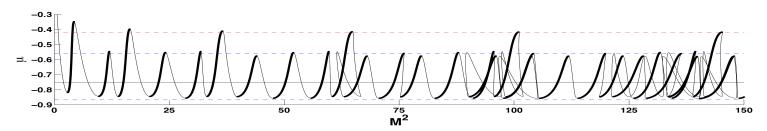


site-centred

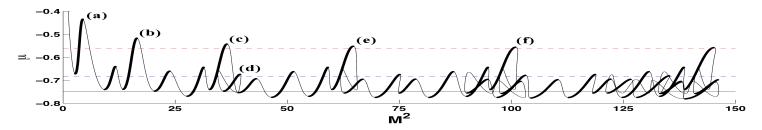
hybrid

Digression into 2D

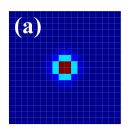
■ Snaking of bond-centred states for $C^+ = 0.1$, $C^{\times} = 0$:

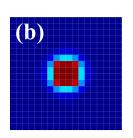


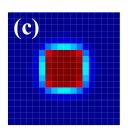
● Snaking of bond-centred states for $C^+ = 0.2$, $C^{\times} = 0$:

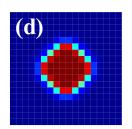


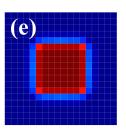
Lines are predictions from 1D fronts: red-along lattice; blue-diagonal.







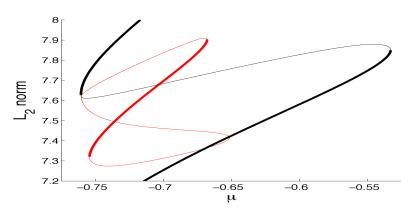


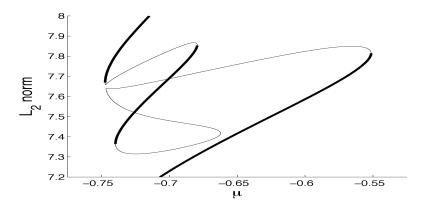


C.R.N. Taylor & J.H.P. Dawes, Snaking and isolas of localized states in bistable discrete lattices. Preprint (2009)

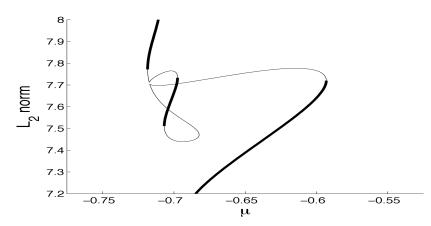
Digression: isolas and switchbacks

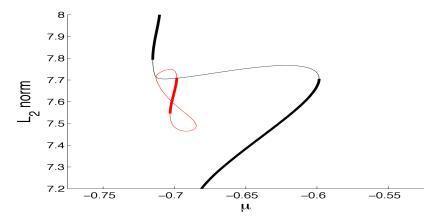
Isolas exist at small C^+ and collide with the snake to form downward twists – 'switchbacks'; $C^+ = 0.19, \, 0.21$:





• ...and then detach from snake as C^+ increases further; $C^+ = 0.27, 0.28$:





Attachment/detachment occurs over very small intervals in C^+ , $\sim 10^{-3}$.

Part III From discrete to continuous

From discrete to continuous

- Is there any connection between discrete coupled-cell systems and PDEs such as Swift–Hohenberg?
- What is the 'continuum limit' of the coupled-cell system?

$$\dot{u}_n = C(u_{n+1} - 2u_n + u_{n-1}) + \mu u_n + 2su_n^3 - u_n^5$$

Answer:

$$(1) u_t = u_{xx} + \mu u + 2su^3 - u^5$$

- i.e. no snaking!
- But is it possible to capture some 'leading-order correction' to (1) that sheds light on the limiting process $C^{-1} \equiv h^2 \to 0$ and shows how the snaking disappears?
- Need to examine some kind of long-wavelength approximation

P.G. Kevrekidis, I.G. Kevrekidis, A.R. Bishop & E.S. Titi, *Phys. Rev.* E **65**, 046613 (2002) P. Rosenau, *Phys. Lett.* A **311**, 39–52 (2003); *Phys. Rev.* B **36**, 5868–5876 (1987)

Well, maybe

First guess (not so good), Taylor expansions:

Suppose there exists a continuum field u(x,t) such that $u(nh,t)=u_n(t)$. Then we have $('\equiv p/\partial z)$:

$$u_{n+1} = u_n + hu'_n + \frac{h^2}{2}u''_n + \frac{h^3}{6}u'''_n + \frac{h^4}{24}u_n^{(4)} + O(h^5)$$

$$u_{n-1} = u_n - hu'_n + \frac{h^2}{2}u''_n - \frac{h^3}{6}u'''_n + \frac{h^4}{24}u_n^{(4)} + O(h^5)$$

which implies

$$h^{-2}(u_{n+1} - 2u_n + u_{n-1}) = u_n'' + \frac{h^2}{12}u_n^{(4)} + O(h^3)$$

So the PDE to this order is

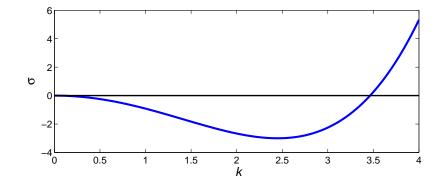
$$u_t = u_{xx} + \frac{h^2}{12}u_{xxxx} + \mu u + 2su^3 - u^5$$

Dispersion relations

$$u_t = u_{xx} + \frac{h^2}{12}u_{xxxx} + \mu u + 2su^3 - u^5$$

This PDE is ill-posed because high wavenumbers grow unboundedly!

Linearise, put $u \sim e^{\sigma t + \mathrm{i} kx}$:



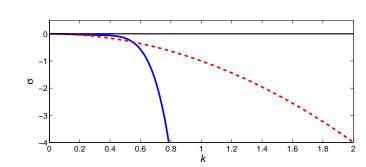
Include 6th order Taylor series term:

$$u_t = u_{xx} + \frac{h^2}{12}u_{xxxx} + \frac{h^4}{360}u^{(6)} + \mu u + 2su^3 - u^5$$

dashed: h = 0.1

solid: h = 10.0

Nothing qualitatively new compared to 2nd order eqn



Full dispersion relation

Note that, from the Taylor series arguments we have

$$u_{n+1} \equiv u(nh+h) = \exp(hD)u_n$$

 $u_{n-1} \equiv u(nh-h) = \exp(-hD)u_n$

where $D \equiv \partial/\partial z$,

so that

$$h^{-2}(u_{n+1} - 2u_n + u_{n-1}) = \frac{2}{h^2} \left(\cosh(hD) - 1\right) u_n =: L(D)u_n.$$

lacksquare Now, Fourier transforming by sending $D
ightarrow \mathrm{i} k$, we have

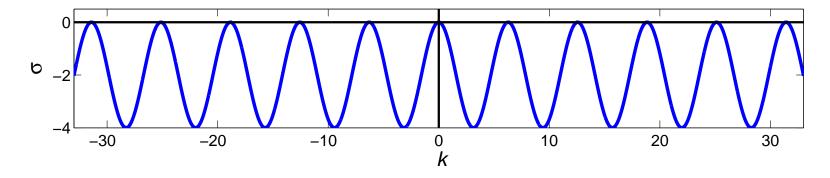
$$\partial_t \hat{u}(k,t) = \hat{L}(k)\hat{u}(k,t) + \hat{F}(u)$$

where

$$\hat{L}(k) = -\frac{4}{h^2}\sin^2\left(\frac{hk}{2}\right)$$

Full dispersion relation

$$\hat{L}(k) = -\frac{4}{h^2}\sin^2\left(\frac{hk}{2}\right)$$



- $m{\hat{L}}(k)$ is a pseudo-differential operator.
- Attempt to simplify to a PDE by finding rational or polynomial approximations for small |k|.
- 2 obvious kinds of approximation
 - Padé approximants
 - Weierstrass product representation

Padé approximants

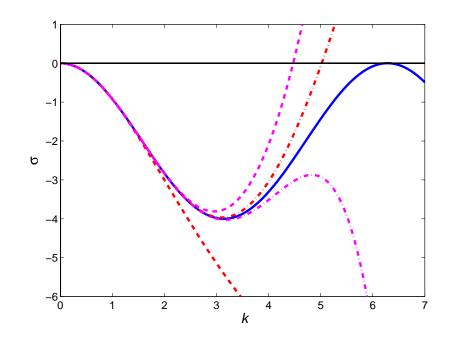
• Lowest-order Padé approximants (2p, 2q) to $\sin^2(x)$ are

$$P_{(2,2)}(x) = \frac{x^2}{1 + x^2/3}$$

$$P_{(4,2)}(x) = \frac{x^2 - x^4/5}{1 + \frac{2}{15}x^2}$$

$$P_{(4,4)}(x) = \frac{x^2 - \frac{10}{63}x^4}{1 + \frac{11}{63}x^2 + \frac{13}{945}x^4}$$

$$P_{(6,2)}(x) = \frac{x^2 - \frac{11}{42}x^4 + \frac{13}{630}x^6}{1 + \frac{1}{14}x^2}$$



- Plot shows $\sigma = \mu 4/h^2 P_{(2p,2q)}(hk/2)$ for $\mu = 0$, h = 1.
- ▶ None of these capture turning point at $k = 2\pi/h$ well.

Weierstrass product

Recall the infinite product representation of \sin :

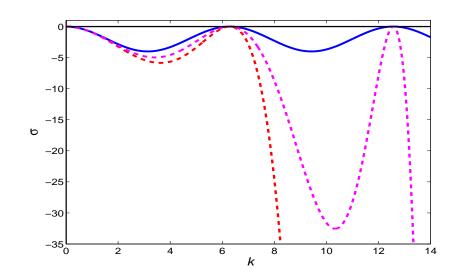
$$\hat{L}(k) = -\frac{4}{h^2}\sin^2\left(\frac{hk}{2}\right) = -k^2 \prod_{n=1}^{\infty} \left[1 - \left(\frac{hk}{2\pi n}\right)^2\right]^2$$

leads to the 6th order approximation given by keeping only the n=1 term:

$$\hat{L}_1(k) := -k^2 \left[1 - \left(\frac{hk}{2\pi} \right)^2 \right]^2$$

only the n=1 term:

only the n=1 and n=2 terms:



PDE approximation

• Turn $\hat{L}_1(k)$ back into a PDE:

$$u_t = \left[1 + \left(\frac{h}{2\pi}\right)^2 \frac{\partial^2}{\partial x^2}\right]^2 u_{xx} + \mu u + 2su^3 - u^5$$

- 'Swift-Hohenberg plus 2 more derivatives'.
- Let $d = h/(2\pi)$ for convenience.

Properties of this PDE:

- Limit $d \to 0$ is singular.
- ullet d can be set to 1 by the useful rescaling:

$$\mu = \tilde{\mu}d^{-2}, \qquad s = \tilde{s}d^{-1}, \qquad u = \tilde{u}d^{-1/2}, \qquad t = \tilde{T}d^2, \qquad x = \tilde{X}d$$

• First integral (let $F(u) = \frac{\mu}{2}u^2 + \frac{s}{2}u^4 - \frac{1}{6}u^6$):

$$H = \frac{1}{2}(u_x)^2 + 2d^2\left(u^{(3)}u_x - \frac{1}{2}(u_{xx})^2\right) + d^4\left(u^{(5)}u_x - u^{(4)}u_{xx} + \frac{1}{2}\left(u^{(3)}\right)^2\right) + F(u)$$

Weakly nonlinear analysis

- Neutral modes at k=0 and $k=2\pi$ suggest a mode interaction.
- Usual multiple-scales expansion for small amplitude, mildly subcritical instabilities:

$$u = \varepsilon \left(A(X,T) + B(X,T)e^{ix} + c.c. \right) + \varepsilon^2 u_2 + \cdots$$

where

$$\mu = \varepsilon^4 \tilde{\mu}, \qquad s = \varepsilon^2 \tilde{s}, \qquad T = \varepsilon^4 t, \qquad X = \varepsilon^2 x$$

gives, at $O(\varepsilon^5)$, a pair of amplitude equations for A, B (now assumed real):

$$A_T = A_{XX} + \mu A + 2sA^3 - A^5 + 12sAB^2 - 20A^3B^2 - 30AB^4$$

$$B_T = 4B_{XX} + \mu B + 12sB^3 - 20B^5 + 12sBA^2 - 10BA^4 - 60B^3A^2$$

Weakly nonlinear analysis

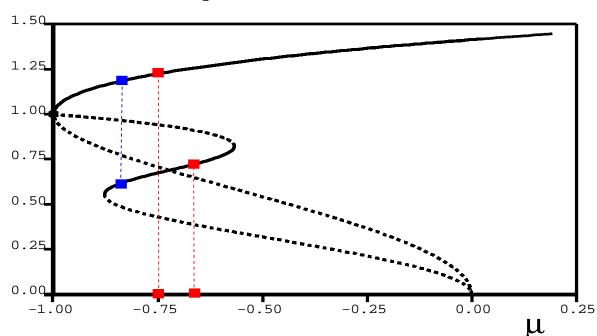
Three kinds of constant solution:

- \blacksquare $A \neq 0$, B = 0: flat homogeneous state
- \blacksquare $B \neq 0$, A = 0: periodic pattern 'discretisation effect'
- \blacksquare $AB \neq 0$: mixed mode

On constant solutions the first integral becomes (at this order)

$$H = \frac{\mu}{2}A^2 + \frac{s}{2}A^4 - \frac{1}{6}A^6 + \mu B^2 + 3sB^4 - \frac{10}{3}B^6 + 6sA^2B^2 - 5A^4B^2 - 15A^2B^4$$

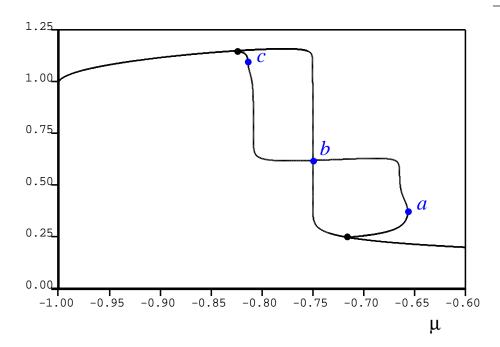
Maxwell points of equal H on the different constant solution branches exist:



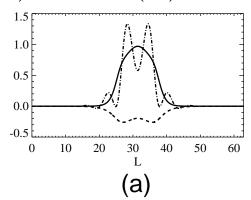
Fronts near the Maxwell points

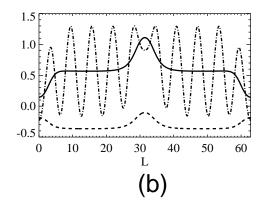
Three kinds of fronts:

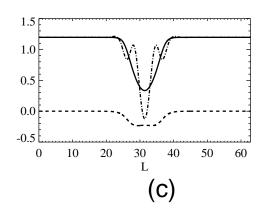
- zero-mixed mode (a below)
- mixed-mode—flat (c below)
- ightharpoonup zero-flat: not shown, but 'as normal', as in the 2nd order ODE obtained when d=0.



A(X) - solid; B(X)- dashed; $A + 2B \cos x$ - dash-dotted:





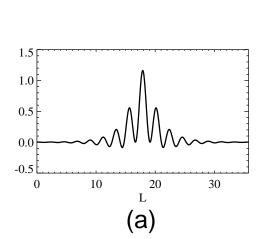


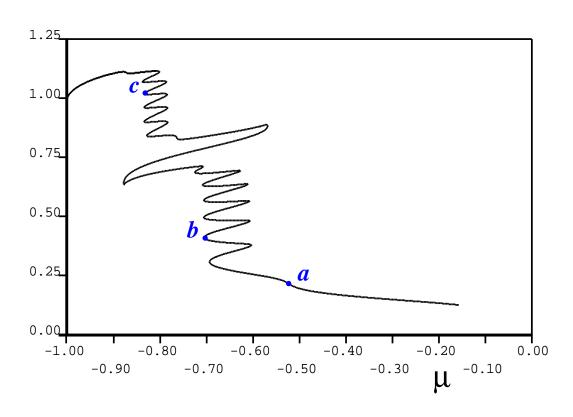
Snaking 1/2

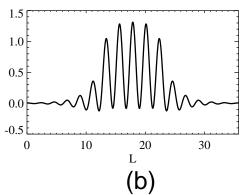
Two (halves of) fat snakes twist around the

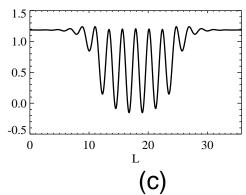
- zero-mixed-mode, and
- flat-mixed-mode

Maxwell points



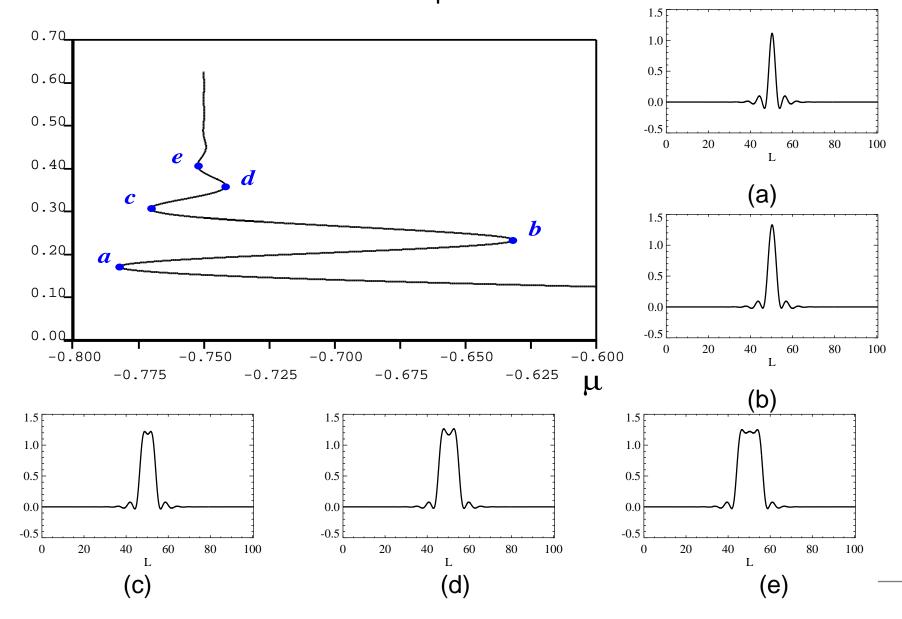




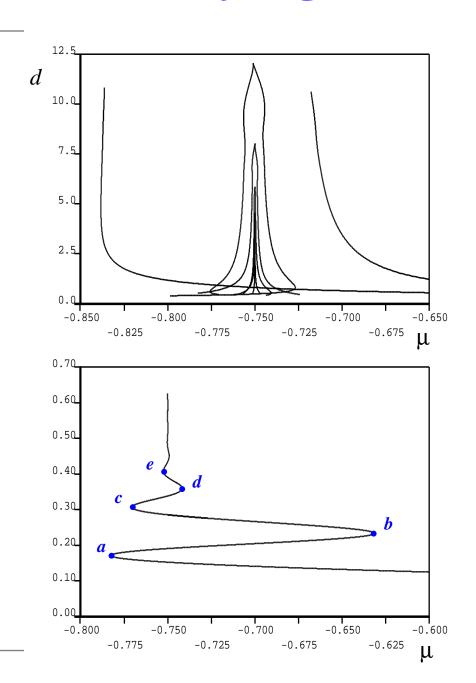


Snaking 2/2

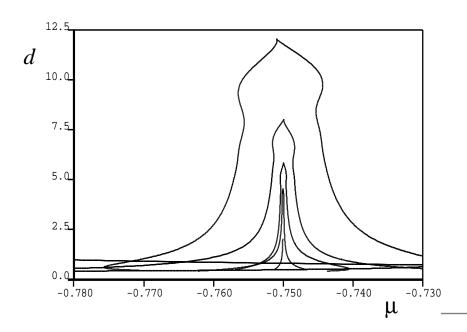
Snake around the zero-flat Maxwell point is 'thin':



Varying d in a finite domain



- As d increases
 - twists pinch-off in saddle-node bifurcations
 - We return to the monotonic front of the 2nd order 'limiting case'
- As d decreases, snake broadens rapidly



Summary

- An additional large-scale mode reinforces the existence of stable (1D) localised states. Novel analysis in the limit $\zeta \ll 1$.
- Many similarities exist between snaking in continuum systems such as Swift-Hohenberg and discrete systems.
- Lots to be done in 2D (and 3D!) still.
- Continuum limit is problematic and singular
 - Nice 6th order model equation that preserves variational structure
 - In a finite domain, 6th order model equation provides a smooth path back to the 2nd order equation as $d \to \infty$ (!!??) and the discretisation effects 'wash out' to scales larger than the domain.