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-- Mathematically complex -- somewhat obscure -- almost impossible to follow

=> very Proctor-esque!



Large-scale(?) fields
Astrophysical motivation leads us to an interest in the creation of
“large-scale” magnetic fields.

What do we mean by “large-scale”?
  Not completely random

  High degree of spatio-temporal organisation

  Spatial scales comparable to the object itself

e.g. Sun:  Large-scale (compared to Sun) magnetic activity cycle
  Active region emergence and laws

  Signature of large-scale toroidal field

BUT also small-scale (compared to object) activity
  Still strong (signed) flux

  Mostly independent of cycle



Large-scale(?) fields: Mean Field Theory
Mainly due to mean-field theory, “large” and “small” has come to
mean something slightly different:

Large-scale: magnetic field on scales much larger that the typical
velocity scale

Small-scale: magnetic fields comparable or smaller than the
typical velocity scale.

Clearly, mean field theory is a two-scale approach based on exactly
the separation of these two scales.



System-scale fields

BUT mean field theory is a KINEMATIC concept.

What happens when the Lorentz force becomes involved and the
situation is DYNAMIC and fully NONLINEAR?

–  unless “large-scale” magnetic fields are force-free, there will
be an accompanying velocity at the same scale!

–  and then magnetic fields are not LARGE any more!

So, things are not so clear in the nonlinear context because the
background flows get adjusted.  (In the kinematic context, they
cannot be adjusted)

Maybe more appropriate in the nonlinear context, to ask whether a
field is generated at the largest available scale:

 a SYSTEM SCALE DYNAMO



“Essentially kinematic” dynamos
Clearly, all depends on the role
of the Lorentz force.

Traditional view of dynamos:
  Initial instability leads to kinematic
growth of a linear eigenfunction

  Magnetic field grows until
nonlinear interactions important, then
Lorentz terms adjust the flow to
saturate the growth.

“Essentially kinematic” since works in the limit of vanishingly small initial
field.  Initial growth independent of initial magnetic field.  Lorentz forces NOT
important initially.

These types of dynamos have been relatively unsuccessful at
producing large-scale organised field!  Lack of success usually
attributed to the fact that we cannot get to high enough Rm.

e.g. Cattaneo 1999: turbulent Boussinesq convective dynamo



“Essentially nonlinear” dynamos
An alternative:  ESSENTIALLY NONLINEAR DYNAMOS

The opposite extreme:
  Everything is driven by Lorentz forces, even initially.

  The very flows that are “dynamo flows” (i.e. amplify magnetic field,
convert between components) are driven by the presence of the magnetic field

  Magnetic forces not only saturate growth but also CAUSE growth

  Requires the intervention of a finite size magnetic field (to create
instability, drive flows nonlinearly)

  Does NOT WORK in the limit of vanishingly small magnetic field

THESE EXIST:

The following is an example that we found a while ago …



e.g. Shear-buoyancy dynamo

Sawtooth profile

By -

By +

Interaction of seed field and
velocity shear leading to magnetic
buoyancy instability
Build one strong magnetic structure via shear

Have initial field that will diffuse if no dynamo

Velocity shear:

         U(y,z) = f(z) [sawtooth(y)]

Magnetic field:

           B0=(0,By,0)

                                          +1 (z>0.5)

                                          - 1 (z<0.5){By  =

Cline, Brummell & Cattaneo 2003



Shear buoyancy dynamo: The movie …



Shear-buoyancy dynamo

• Strong
magnetic
field
maintained!

•  Strong
toroidal field
is generated
in a cyclic
manner

•  Polarity of
the strong
field reverses

Bx - ve Bx + ve

cf. By(t=0)=1!



Shear buoyancy dynamo: Longer time …

•  Diffusion time ~ 300 time units

•  => even more convincing is a dynamo

•  Remarkably, also shows periods of reduced activity!



Mechanism: Field induced K-H instability
For sufficiently strong initial field:

Instability mechanism:

  Initial shear flow is not a dynamo!

  Initial field purely poloidal

  Poloidal field sheared -> toroidal

  Toroidal field is magnetically buoyancy

  Magnetic buoyancy induces roll-like poloidal flows

  These steepen the shear

  Shear then becomes unstable to Kelvin-Helmholtz type instability

  Shear modes in vertical and horizontal have phases such that they create helical flow

  Helical flow twists STRONG toroidal magnetic structure, giving rise to STRONG
poloidal

  Feedback loop for dynamo created Magnetic forcing of
flows responsible
for dynamo action



Shear buoyancy dynamo
A self-consistent  dynamo driven solely by the action of shear and magnetic
buoyancy.  (Note: No Coriolis forces required!)

 It is NON-KINEMATIC, ESSENTIALLY NONLINEAR:

  Original velocity (shear) NOT a dynamo flow

  Action of magnetic field adds dynamo component

  Needs a finite magnetic field to get it going

ASIDE: GOOD QUESTION: WHAT IS THE ROLE OF TURBULENCE?

 VERY LAMINAR!  New question:  No longer “Does turbulence do the trick?” but
rather: “Does this still work in presence of turbulence?”.  Add noise to the dynamo
simulations … (work in progress  -- Seems to be robust at high Rm and to added noise

  NOT NEW: There are many examples of these things that have been around
for a while (geodynamo: “strong field branch” ; Jean-Claude Thelen;  Galloway - Archontis
dynamo; tearing mode pinch in tokamacs; Rincon MRI subcritical dynamo instability;  …)

BIG QUESTION: DO THESE HAVE DIFFERENT BEHAVIOUR AT HIGH Rm?



Simple model of END’s?
Can we build a SIMPLER model that encapsulates the essence of the END?

  Would like to return to a KINEMATIC-type formulation, i.e. NOT solve
the momentum equation; only solve the induction equation.

  But now need a velocity with a piece that depends on the magnetic field
=> a nonlinear induction equation.

Assume (kinetic) Reynolds number is low => velocity is linear functional of the
forces (although forces might be nonlinear functions of magnetic field)

Require 3 parts to the forces and therefore the driven velocity:

  External force that drives a background (original) flow (dynamo or not),
e.g. shear flow (common large-scale flow; thought to play a role; not a
dynamo)

  Part of the Lorentz force that drives additional flow that contributes to
dynamo action (cf. the helical K-H modes in shear-buoyant dynamo)

  Another part of the Lorentz force that drives a flow that is responsible for
saturation of the dynamo (typically a small-scale flow)



Simple model of END’s? Tobias, Cattaneo, Brummell, 2010

So, solve, in a multiply-periodic domain

with

and assume velocities independent of z

1.
2.

3.

=>

! 

ˆ B = (BC + iB S ) = (b1
C + ib1

S ,b2
C + ib2

S ,b3
C + ib3

S )
Shear velocity:
non-dynamo

Small-scale velocity:
CAN BE a dynamo!

Magnetically-induced
velocity: non-linearly
driven, right sort of
parity, solenoidal

! 

k = 3, kz = 0.1, " = 0.2, # = 0.01, Xmx =Ymx = 6$ , nx = ny = 768



Results: Essentially kinematic
c1=1  c2=1  c3=0 :  (µi=1 unless otherwise stated)

  Shear and small-scale (potentially
dynamo) velocity only

  No magnetically-driven flow

  Effect of nonlinearity is only to
saturate growth

=> “essentially kinematic” dynamo

B2

U2

t=29 (early) t=4026 (saturated)

k=3

kx=1,ky=0



Results: Mixed kinematic and nonlinear
c1=1  c2=0  c3=1 :
 No uss: small-scale, cellular

flow

 uM: magnetically-driven
nonlinear flow

 => Initial conditions important
- need substantial initial field

 kx=ky=16 initial field

Three regions of results:

I. Adjustment

II. Nonlinear growth
(non-exponential)

III. Saturation (by
quenching factors)

B2

U2

I II III

Final state: k=1 “system scale”; w
small; almost planar flow; very little
induction and dissipation



Results: Essentially nonlinear
c1=0  c2=0  c3=1 :
 No shear - maybe this causes system-scale dynamo so turn it off.

 No uss: small-scale, cellular flow

 Only uM: magnetically-driven nonlinear flow

=> Initial conditions important again (a) System-scale i.c. (b) Small-scale i.c.

(a)                                                           (b)

B2

I II IIIResults similar
(to each other and to previous results)

I. Adjustment

II. Nonlinear growth : Re-
adjustments of scale in bursts;
controlled by µi

III. Saturation : System-scale, lower
energy (no shear)



Results: Essentially nonlinear
c1=0  c2=0  c3=1 :

µ3=0.1

µ3=0.001

B2

I II III

B2

I II



Conclusions
Old concepts: “large-scale” and “small-scale” dynamos:
 useful in kinematic sense but much less clear in the nonlinear sense, since the velocity field may

evolve as the Lorentz force becomes important

New concept:  “system-scale” dynamo:
 compare characteristic scale of magnetic field to the scale of the object in question (which does

not evolve [in general])

Nonlinear (dynamic rather than kinematic) regime:

Possibilities:  essentially kinematic, essentially nonlinear (and mixture)

Can the “essentially nonlinear” do what the “essentially kinematic” dynamos have
struggled to do -- produce system scale fields at large Rm.

Simple model:
 Encouraging: Nonlinear induction equation can have system-scale solutions

 Future work: different relationships u-B; 3D?




