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Overview
(1) Definition of dynamo model problem
(2) Overview on proposed planetary magnetic

field scaling laws
(3) Theory: Scaling laws for flow velocity
(4) Theory: Scaling laws for magnetic field
(5) Comparison with dynamo model results
(6) Selection of magnetic field geometry
(7) Nusselt number scaling laws
(8) Comparison with planetary field strength
(9) Comparison with rapidly rotating stars



Direct numerical simulation of  
MHD equations possible

But not at realistic values of 
some key parameters

⇒ Find scaling laws that can
possibly be extrapolated to 
planetary values

Planetary dynamos
Convection-driven magnetohydrodynamic flow in  
rotating and electrically conducting spherical shell
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Boussinesq equations
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E: Ekman number Ra*:  Rayleigh number
Pr: Prandtl number Pm:  magnet. Prandtl number



Control parameters
Definition Name Force 

balance
Earth 
value

Model 
values

Ra*=αgΔT/Ω2D
Rayleigh 
number

Buoyancy
Rotational forces

5000 x
critical ?

< 1000 x 
critical

E = ν/ΩD2
Ekman 
number

Viscosity
Coriolis force 10-14 ≥ 10-6

Pr = ν/κ
Prandtl   
number

Viscosity
Thermal diffusion 0.1 - 1 0.1 – 10

Pm = ν/η
Magnetic
Prandtl #

Viscosity
Magnetic diffus. 10-6 0.06 - 20

Note: If convection is driven by an imposed heat flow q rather than by a fixed ΔT,  
Ra* is replaced by a flux Rayleigh number Raq*  =  αgq/(ρcpD2Ω3)  =  q/(ρHTD2Ω3).
α: therm. expansivity, g: gravity, D: shell thickness, HT=ρcp/α: temperature scale height



Diagnostic numbers
Name Ratio of Earth Model 

Re = UD/ν Reynolds 
number

Nonlinear inertia
Viscosity

108 10 - 2000

Rm = UD/η
Magnetic
Reynold#

Advection
Magnet. diffus.

103 40 - 3000

Ro = U/ΩD Rossby 
number

Nonlinear inertia
Coriolis 5 x 10-6 10-4 - 1

Nu = q/qcon
Nusselt
number

Total heat flow
Conductive heat

? (>>1) 2  - 30

Λ=σB2/2ρΩ Elsasser 
number

Lorentz force
Coriolis force 1 - 10 .03 - 100



...  describe for a dynamical system the
systematic dependence of diagnostic
numbers on the control parameters.

Example:   In (non-rotating) highly
turbulent convection,  the Nusselt
number varies with Rayleigh number as

Nu   ~   Ra2/7

Scaling laws



What controls the strength of a magnetic
field generated in a planetary dynamo ?

Candidates:   Rotation rate, electrical
conductivity, energy flux, density, viscosity, ...

Do the same rules apply to planets and 
stars ?

Planetary field scaling laws: 
Practical questions



BR3 ~ (ρ Ω R5)α „Magnetic Bode law“ (Russell, 1978)

B2 ~ ρ Ω2 R2 Busse (1976)

B2 ~ ρ Ω σ-1 „Elsasser # rule“ (Stevenson, 1979)

B2 ~ ρ R3 q σ Stevenson  (1984)    (for small q)

B2 ~ ρ Ω R5/3 q1/3 Curtis & Ness (1986)

B2 ~ ρ Ω3/2 R σ-1/2 Mizutani et al. (1992)

B2 ~ ρ Ω2 R Sano (1993)

B2 ~ ρ Ω1/2 R3/2 q1/2 Starchenko & Jones (2002)

B2 ~ ρ R4/3 q2/3 Christensen & Aubert (2006)

σ:  conductivity, ρ: density, Ω: rotation rate, R: core radius, q: convected heat flux

Proposed planetary scaling laws



The „magnetic Bode law“

Mercury

Earth

Uranus

Neptune

Saturn

Jupiter
Tm3

kgm2/s



The „Bode law fallacy“
• Generate random distribu-

tions of variables Ω („rota-
tion rate“) and B („field
strength“) in range 0.1 – 10

• Generate random distribu-
tion of variable R („radius“)     
1/6 < R < 6 

• Introduce new variables 
L=ΩR5 („angul. momentum“)  
M=BR3  („dipole moment“)

• There is a correlation
between M and L

Cain et al., J. Geophys. Res. 1995



Velocity scaling: Mixing length
Balance in vorticity equation (non-magnetic):

ρ (u •∇) u     ~     ραgδT er

Assume mixing length ℓ and balance inertia ~ buoyancy

U2/ℓ ~    αgδT
Relate temp. fluctuation to convected heat flux:  qc ~ ρcp UrδT

Introduce temperature scale height:     HT
-1 = αg /cp

U  ~ [qc ℓ / ρ HT] 1/3

In astrophysics the mixing length is usually set to ℓ ~ Hρ.

In planets Hρ > D and it is appropriate to set ℓ ~ D.

α: thermal exp. coeff., g: gravity,  ℓ: mixing length, δT: fluctuating T,  D: global length scale,



Velocity scaling: MAC-balance

j × B     ~     ραgδTer ~     2ρΩ ez × u
Magnetic Archimedean Coriolis

Assuming that all three forces are of the same order, any two
must balance. Considering the balance between buoyancy
and Coriolis force results in

2 Ω U    ~ αgδT   
and in terms of the convected energy flux and HT in

U  ~ [ qc / (ρ Ω HT) ] ½

(Starchenko & Jones, 2002)



Velocity scaling: CIA-balance
2ρΩ ∂u/∂z  ~  ρ ∇×([∇×u]×u)   ~  ραg ∇×Ter

Coriolis Inertia                    Archimedean

Assume that the (small) length scale ℓ applies
to derivatives in inertia and buoyancy terms. 
Because of quasi-geostrophic flow structure, 
the length scale L associated with ∂/∂z in 
Coriolis term is large. Triple balance allows to 
determine U and ℓ. Replacing δT by qc, the rule
for U is:

U  ~ [qc / (ρHT)]2/5 (L/Ω)1/5

For planets L = D,  but with strong density stratification L = Hρ

(Aubert et al., 2001)



Velocity scaling: Non-dimensional
Divide scaling laws by DΩ Rossby number

Ro = U/(ΩD)

Terms on RHS transform to flux Rayleigh number

Raq*  =  αgqc / (ρcpD2Ω3)  =  qc / (ρHTD2Ω3)
Raq* = Ra*(Nu-1)E/Pr      (Ra* is control parameter).

Raq* is proportional to the (non-dim.) power generated by
buoyancy forces. The three scaling laws become:

Ro ~  (Raq*)γ

where γ=1/3 (mixing length) , γ=½ (MAC)  or γ=2/5  (CIA)



Balance Coriolis – Lorentz  (Magnetostrophic)

2ρ Ω × u    ~   j × B
Generalized Ohm‘s law:  j = σ (E + u × B)

Ignore electric field

J ~ σUB        ⇒ 2ρΩU  ~ σUB2

Elsasser number
Λ =  σB2/(2ρΩ)    ~    1

(Stevenson, 1979)

j: current density, E: electric field,  capital letters indicate characteristic value

Magnetic field: Elsasser number



• Rotation impedes
convection

• Magnetic field impedes
convection

• Both combined are less
retarding when Λ ~ 1

Chandrasekhar, 1961.

Onset of rotating convection
with imposed field
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2ρ Ω × u    ~   j × B

j = µo
-1 ∇ × B          J ~ µo

-1 B/ℓB

B2/2µo ~  ρ Ω U ℓB

(1) Use your preferred scaling law for U
(2) Make some assumption about ℓB

Leads to scaling laws proposed by Busse(1976), Curtis & Ness (1986), 
Mizutani et al. (1992), Sano (1993), Starchenko & Jones (2002) 

Magnetostrophic balance –
different approach



Power-controlled magnetic
field strength

Power generated by buoyancy per unit volume:

P   ~   ρgαUrδT   ~   qc/HT
Convected heat flux qc = ρcpUrδT. 
Temperature scale height HT

-1 = αg/cp

Ohmic dissipation per unit volume:

Dohm ~ j2/σ ~ ηB2 / (µoℓB2)
η: magnetic diffusivity,  ℓB: magnetic field length scale. Fraction
fohm of total power dissipated ohmicly (rather than viscously)

B2/2μo ~ fohm ℓB2/η (qc/HT)



Power-controlled field strength
Emag =  B2/2μo ~  fohm ℓB2/η (qc/HT)

(1) ℓB2/η = f1 (U/D,Ω)     assume ℓB2/η ~  (U/D)-1

equivalent to   ℓB/D  ~  Rm-1/2 

(2) Ro = U/DΩ ~  (Raq*)γ

γ = 1/3 (Mixing l.)   Emag ~ fohm ρ1/3 (qc D/HT)2/3

γ = 1/2  (MAC)   Emag ~ fohm D (qcρΩ/HT)1/2

γ = 2/5  (CIA)    Emag ~ fohm ρ2/5Ω1/5D4/5 (qc/HT)3/5



Non-dimensional scaling laws
Many different ways to non-dimensionalize possible. 
Here use „rotational scaling“: 
Em

Ω := Emag / (ρΩ2D2) qΩ :=  qc / (ρΩ3D3) 

Em
Ω ~   fohm (qΩ D/HT)p ~  fohm (Raq*)p

where p = 2/3        mixing length balance (γ=1/3)

p = 1/2 MAC balance (γ=1/2)

p = 3/5 CIA balance (γ=2/5)



Thermodynamic efficiency
Emag = B2/2µo ~  fohm ρ1/3 (qc D/HT)2/3

So far, balance power generation / ohmic dissipation treated
locally. Global balance more likely in dynamos with large-scale
field. Complication: qc, ρ and HT vary with radius. Assumption: 
volume average is meaningful ⇒ efficiency factor F

Dim:         Emag =  c fohm ρo
1/3 (Fqo)2/3

Non-dim:  Em = c fohm (Fq)2/3

F can be calculated for a given structural model of planet/star. 
qo, ρo: reference values, c: constant of proportionality.



A large number of numerical dynamo simulations
is now available, which cover a sufficiently wide
range in parameter space, to test scaling laws.

10-6 ≤ E ≤ 10-3 0.06 ≤ Pm ≤ 15     0.1 ≤ Pr ≤ 10

Select dynamo models with a dipole-dominated
magnetic field. 

Use only cases with significantly supercritical
convection ( Nu > 2)  to test scaling laws. 

Test of scaling laws



Rossby number scaling
Symbol shape: different 
Ekman number
(viscosity vs. rotation)

Color: different magn. 
Prandtl #  (viscosity / 
magnetic diffusivity) 

Green-rimmed symbols
for fixed heat flux

Best agreement with
CIA-scaling theory

Christensen & Aubert, 2006 (updated)

slope 0.41

0.5

0.33

Pm > 10
Pm < 0.1

Ω



Magnetic energy scaling
Symbol shape: different 
Ekman number
(viscosity vs. rotation)

Color: different magn. 
Prandtl #  (viscosity / 
magnetic diffusivity) 

fohm recorded in each
model run (0.3 – 0.8)

Best agreement with
mixing length theory

Christensen & Aubert (2006), 
Christensen et al. (2009)
Takahashi et al. (2008)Ω

Ω

dark red:   Pm≥10
dark blue: Pm≤0.1

slope 1 (p=2/3)

p=1/2
p=3/5



Results for different Ekman number, Prandtl 
number and magnetic Prandtl number
nearly collapsed on single line ⇒ viscosity, 
diffusivities and rotation play no role.

A weak residual dependence on the
magnetic Prandtl number may exist.

Conflict between best fitting exponents for
Ro and for Emag.

Interim conclusion



Test of recipe for
calculating F-factor

Green: „Compositional
convection“ – zero flux on 
outer boundary

Pink: Moderately com-
pressible dynamo models
(Dobler et al., ApJ, 2006)

Scaling versus dynamo models



Different non-dimensionalizations

q‘ = qoR3/ρη3

Em=B2R2/2μoρη2

magnetic scaling

q‘ = qo/ρ(Ωη)3/2

Em=B2/2μoρΩη

magneto-rotational
scaling

q‘ = qoR1/3/ρΩ4/3ν-1/3κ2

Em=B2R2/9/2μoρΩ8/9ν-2/9κ4/3

critical Rayleigh number
scaling
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Ohmic dissipation time

Ohmic dissipation time  τη =    Emag/Dohm ~  ℓB2/η
Non-dimensional:          τη*  =  τη (η/D2)     ~  (ℓB/D)2

see also Christensen & Tilgner (2004)

slope -0.93

-1.0



Ohmic dissipation time
Dependence of τη* on  „magnetic Ekman number“
Eη = E/Pm implies (weak) dependence of τη on Ω

τη ~  ℓB2/η ~ (D/U)5/6 Ω-1/6

This, combined with a 2/5-power law for the Rossby
number, gives exactly the 1/3-power law for the
magnetic energy density.



What is the role of rotation ?

So far, we considered only rapidly rotating
dynamos. What changes when inertial forces
can compete with the Coriolis forces ?

⇒ Field morphology changes



Magnetic field morphology
Ra/Rac= 114   E=10-5 Pm=0.8 Ra/Rac= 161   E=10-5 Pm=0.5

Rm = 914      Roℓ = 0.12 Rm = 917      Roℓ = 0.21

Earth
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The local Rossby number
Inertial vs. Coriolis force: 

Rossby number Roℓ
calculated with mean
length scale ℓ in the
kinetic energy spectrum

Roℓ = U/Ωℓ

Regime boundary at  
Roℓ ≈ 0.12

dipolar

multipolar

Jupiter Earth Mercury

Christensen & Aubert (2006); Olson & Christensen (2006) – updated.



Nusselt number scaling: rotating
convection in a box

Rotating convection in cartesian geometry:   
Nu ~ Ra6/5 for Racrit < Ra < Rat   Nu ~ Ra2/7 for Ra > Rat

at Ra=Rat thickness of thermal boundary layer ≈ Ekman layer

(King et al., Nature, 2009)



Heat transfer scaling: dynamos

14/13

2/7

Transition Rayleigh #
Rat ~ E-7/4

Normalized Nusselt #           
Nu‘ = Nu / Rat

2/7

Transition in Nusselt
number nearly coincident
with dipole – multipole 
transition.

Rat/Racrit ≈ 100    at  E = 10-5

Rat/Racrit ≈ 105 at  E = 10-14



Use structural models to evaluate

setting the length scale   L = min(D,Hρ)

Jupiter F = 1.1

Earth‘s core F = 0.27 – 0.52

Stars F = 0.78 – 1.14 
<...>: volume average, D: dynamo layer thickness, Hρ: density scale height
Christensen et al. (2009)

Application to celestial dynamos



From surface to interior field

Observations tell us about the field at the surface
of the dynamo (or only its long-wavelength part).

The scaling law makes a prediction about the
mean internal field.

How are they related ?
⇒ Use results from dynamo models for ratios:

Binterior / Bsurface ≈ 2.5 – 5.5  (3.5 nominally)

Binterior / Bdipole ≈ 4  - 20      (7 nominally) 



Field strength scaling of planets
• Mercury is slow rotator & 

predicted to be in multi-polar 
regime. Energy flux unknown.

• In Saturn and in Mercury the
dynamo may operate below a 
stably stratified conducting
layer of unknown thickness

• Uranus‘ and Neptune‘s dyna-
mos may operate in thin
convecting shell above stable
fluid region

• Perhaps only Earth and 
Jupiter have „simple“ dynamos
(i.e. in a deep convecting shell
without shielding stable layer)



Application of field strength
scaling law to stars

Problems with sun:
• Slow rotation
• Large scale field not dominant
• Tachocline may lead to different type of dynamo

Fully convective, rapidly rotators more suitable
• Low-mass M-dwarfs ( M < 0.35 Msun)
• T-Tauri stars (Pre-main sequence, contracting)



M-dwarfs: surface field vs. rotation

Field strength increases with rotation rate but saturates at Ro <  0.1

Observed field strength of M-dwarfs

Reiners et al, ApJ, 2009.

← Rotation rate



Stellar field morphology

V374 Peg
M = 0.28 Msun Rotation period 0.45 d
Field mapped by Zeeman Doppler tomography Donati et al. (2006,2008)

Slowly rotating
solar-type stars:  
small-scale fields

Rapidly rotating
low-mass stars: 
significant large 
scale field
component

kGauss



From planets to stars

The observed field of 
rapidly rotating low-mass
stars agrees with the
prediction as well as that
of Jupiter and Earth
⇒ confirmation for
scaling law
⇒ dynamos in planets
and (some) stars may be
similar

[Jm-3]

[Jm-3]
T Tauri stars
M & K-dwarfs
Prot < 4 days

1 kG

10 kG



Add slowly rotating stars

[Jm-3]

[Jm-3]
Prot < 4 days
4d < Prot < 10d
10d < Prot

Sun

Slowly rotating K- and 
G-stars fall below the
prediction.

Rapid rotation seems
the essential 
prerequisite for the
applicability of the
scaling law.

Christensen et al. (2009)



Summary
• In dipole-dominant natural dynamos with rapid rotation 

magnetic field strength is controlled by the energy flux and 
is independent of rotation rate, conductivity and viscosity

• For slow rotation (Rolocal > 0.1) the field is weaker and 
multipolar  

• The predictions of the scaling law for B agree with Earth‘s
and Jupiter‘s field strength and with the field strength of 
rapidly rotating low-mass stars

• In several solar system planets, thin convective shells or
stably stratified layers could make a comparison difficult

• Strong and possibly observable magnetic fields are
predicted for rapidly rotating brown dwarfs and massive 
extrasolar planets
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