Scaling laws for dynamos in rotating spheres: from planets to stars

Ulrich Christensen
Max Planck Institute for Solar System Research, Katlenburg-Lindau, Germany

In collaboration with: Julien Aubert, Volkmar Holzwarth, Ansgar Reiners, Johannes Wicht
Overview

1. Definition of dynamo model problem
2. Overview on proposed planetary magnetic field scaling laws
3. Theory: Scaling laws for flow velocity
4. Theory: Scaling laws for magnetic field
5. Comparison with dynamo model results
6. Selection of magnetic field geometry
7. Nusselt number scaling laws
8. Comparison with planetary field strength
9. Comparison with rapidly rotating stars
Planetary dynamos

Convection-driven magnetohydrodynamic flow in rotating and electrically conducting spherical shell

Direct numerical simulation of MHD equations possible

But not at realistic values of some key parameters

⇒ Find scaling laws that can possibly be extrapolated to planetary values
Boussinesq equations

\[
\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} + 2\mathbf{e}_z \times \mathbf{u} + \nabla P = \frac{E}{Pr} \nabla^2 \mathbf{u} + \frac{Ra^*}{r_o} \frac{\mathbf{r}}{r_o} T + (\nabla \times \mathbf{B}) \times \mathbf{B}
\]

- Inertia
- Coriolis
- Viscosity
- Buoyancy
- Lorentz

\[
\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T = \frac{E}{Pr} \nabla^2 T
\]

- Advection
- Diffusion

\[
\frac{\partial \mathbf{B}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{B} = \mathbf{B} \cdot \nabla \mathbf{u} + \frac{E}{Pm} \nabla^2 \mathbf{B}
\]

- Advection
- Induction
- Diffusion

\text{E: Ekman number} \quad \text{Ra*: Rayleigh number} \quad \text{Pr: Prandtl number} \quad \text{Pm: magnet. Prandtl number}
Control parameters

<table>
<thead>
<tr>
<th>Definition</th>
<th>Name</th>
<th>Force balance</th>
<th>Earth value</th>
<th>Model values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ra* = (\alpha g \Delta T / \Omega^2 D)</td>
<td>Rayleigh number</td>
<td>Buoyancy</td>
<td>5000 x critical</td>
<td>< 1000 x critical</td>
</tr>
<tr>
<td>E = (\nu / \Omega D^2)</td>
<td>Ekman number</td>
<td>Viscosity</td>
<td>(10^{-14})</td>
<td>(\geq 10^{-6})</td>
</tr>
<tr>
<td>Pr = (\nu / \kappa)</td>
<td>Prandtl number</td>
<td>Viscosity</td>
<td>0.1 - 1</td>
<td>0.1 – 10</td>
</tr>
<tr>
<td>Pm = (\nu / \eta)</td>
<td>Magnetic Prandtl #</td>
<td>Viscosity</td>
<td>(10^{-6})</td>
<td>0.06 - 20</td>
</tr>
</tbody>
</table>

Note: If convection is driven by an imposed heat flow \(q \) rather than by a fixed \(\Delta T \), \(Ra^* \) is replaced by a flux Rayleigh number \(Ra_q^* = \alpha g q / (\rho c_p D^2 \Omega^3) = q / (\rho H_T D^2 \Omega^3) \).
\(\alpha \): therm. expansivity, \(g \): gravity, \(D \): shell thickness, \(H_T = \rho c_p / \alpha \): temperature scale height.
Diagnostic numbers

<table>
<thead>
<tr>
<th>Name</th>
<th>Ratio of</th>
<th>Earth</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Re = \frac{UD}{\nu}$</td>
<td>Reynolds number</td>
<td>10^8</td>
<td>10 - 2000</td>
</tr>
<tr>
<td>$Rm = \frac{UD}{\eta}$</td>
<td>Magnetic Reynolds number</td>
<td>10^3</td>
<td>40 - 3000</td>
</tr>
<tr>
<td>$Ro = \frac{U}{\Omega D}$</td>
<td>Rossby number</td>
<td>5×10^{-6}</td>
<td>10^{-4} - 1</td>
</tr>
<tr>
<td>$Nu = \frac{q}{q_{con}}$</td>
<td>Nusselt number</td>
<td>? $(>>1)$</td>
<td>2 - 30</td>
</tr>
<tr>
<td>$\Lambda = \frac{\sigma B^2}{2 \rho \Omega}$</td>
<td>Elsasser number</td>
<td>1 - 10</td>
<td>.03 - 100</td>
</tr>
</tbody>
</table>

- Nonlinear inertia
- Viscosity
- Advection
- Magnet. diffus.
- Nonlinear inertia
- Coriolis
- Total heat flow
- Conductive heat
- Lorentz force
- Coriolis force
Scaling laws

... describe for a dynamical system the systematic dependence of diagnostic numbers on the control parameters.

Example: In (non-rotating) highly turbulent convection, the Nusselt number varies with Rayleigh number as

\[\text{Nu} \sim \text{Ra}^{2/7} \]
Planetary field scaling laws: Practical questions

What controls the strength of a magnetic field generated in a planetary dynamo?

Candidates: Rotation rate, electrical conductivity, energy flux, density, viscosity, ...

Do the same rules apply to planets and stars?
Proposed planetary scaling laws

\[B R^3 \sim (\rho \Omega R^5)^\alpha \]
\[B^2 \sim \rho \Omega^2 R^2 \]
\[B^2 \sim \rho \Omega \sigma^{-1} \]
\[B^2 \sim \rho R^3 q \sigma \]
\[B^2 \sim \rho \Omega^{5/3} q^{1/3} \]
\[B^2 \sim \rho \Omega^{3/2} R \sigma^{-1/2} \]
\[B^2 \sim \rho \Omega^2 R \]
\[B^2 \sim \rho \Omega^{1/2} R^{3/2} q^{1/2} \]
\[B^2 \sim \rho R^{4/3} q^{2/3} \]

„Magnetic Bode law“ (Russell, 1978)
Busse (1976)
„Elsasser # rule“ (Stevenson, 1979)
Stevenson (1984) (for small q)
Curtis & Ness (1986)
Mizutani et al. (1992)
Sano (1993)
Starchenko & Jones (2002)
Christensen & Aubert (2006)

σ: conductivity, ρ: density, Ω: rotation rate, R: core radius, q: convected heat flux
The „magnetic Bode law“

![Graph showing the relationship between dipole moment and angular momentum for various planets.](image)
The „Bode law fallacy“

- Generate random distributions of variables Ω („rotation rate“) and B („field strength“) in range $0.1 – 10$
- Generate random distribution of variable R („radius“) $1/6 < R < 6$
- Introduce new variables $L = \Omega R^5$ („angul. momentum“) $M = BR^3$ („dipole moment“)
- There is a correlation between M and L

Cain et al., J. Geophys. Res. 1995
Velocity scaling: Mixing length

Balance in vorticity equation (non-magnetic):

$$\rho (u \cdot \nabla) u \sim \rho \alpha g \delta T e_r$$

Assume mixing length ℓ and balance inertia \sim buoyancy

$$\frac{U^2}{\ell} \sim \alpha g \delta T$$

Relate temp. fluctuation to convected heat flux: $q_c \sim \rho c_p U_r \delta T$

Introduce temperature scale height: $H_T^{-1} = \alpha g / c_p$

$$U \sim \left[\frac{q_c \ell}{\rho H_T} \right]^{1/3}$$

In astrophysics the mixing length is usually set to $\ell \sim H_\rho$. In planets $H_\rho > D$ and it is appropriate to set $\ell \sim D$.

α: thermal exp. coeff., g: gravity, ℓ: mixing length, δT: fluctuating T, D: global length scale,
Velocity scaling: MAC-balance

\[j \times B \sim \rho \alpha g \delta T e_r \sim 2\rho \Omega e_z \times u \]

Magnetic \hspace{1cm} **Archimedean** \hspace{1cm} **Coriolis**

Assuming that all three forces are of the same order, any two must balance. Considering the balance between buoyancy and Coriolis force results in

\[2 \Omega U \sim \alpha g \delta T \]

and in terms of the convected energy flux and \(H_T \) in

\[U \sim \left[\frac{q_c}{(\rho \Omega H_T)} \right]^{1/2} \]

(Starchenko & Jones, 2002)
Velocity scaling: CIA-balance

\[2\rho\Omega \frac{\partial u}{\partial z} \sim \rho \nabla \times (\nabla \times u) \times u \sim \rho \alpha g \nabla \times T e_r\]

Assume that the (small) length scale \(\ell \) applies to derivatives in inertia and buoyancy terms. Because of quasi-geostrophic flow structure, the length scale \(L \) associated with \(\partial/\partial z \) in Coriolis term is large. Triple balance allows to determine \(U \) and \(\ell \). Replacing \(\delta T \) by \(q_c \), the rule for \(U \) is:

\[U \sim \left[\frac{q_c}{(\rho H_T)} \right]^{2/5} \left(\frac{L}{\Omega} \right)^{1/5}\]

For planets \(L = D \), but with strong density stratification \(L = H_\rho \) (Aubert et al., 2001)
Velocity scaling: Non-dimensional

Divide scaling laws by $D \Omega$ Rossby number

$$Ro = \frac{U}{(\Omega D)}$$

Terms on RHS transform to flux Rayleigh number

$$Ra_q^* = \frac{\alpha g q_c}{(\rho c_p D^2 \Omega^3)} = \frac{q_c}{(\rho H_T D^2 \Omega^3)}$$

$$Ra_q^* = Ra^*(Nu-1)E/Pr \quad \text{(Ra}^* \text{ is control parameter).}$$

Ra_q^* is proportional to the (non-dim.) power generated by buoyancy forces. The three scaling laws become:

$$Ro \sim (Ra_q^*)^\gamma$$

where $\gamma=1/3$ (mixing length), $\gamma=1/2$ (MAC) or $\gamma=2/5$ (CIA).
Magnetic field: Elsasser number

Balance Coriolis – Lorentz (Magnetostrophic)

\[2\rho \Omega \times u \sim j \times B \]

Generalized Ohm’s law: \(j = \sigma (E + u \times B) \)

Ignore electric field

\[J \sim \sigma UB \quad \Rightarrow \quad 2\rho \Omega U \sim \sigma UB^2 \]

Elsasser number

\[\Lambda = \frac{\sigma B^2}{2\rho \Omega} \sim 1 \]

(Stevenson, 1979)

j: current density, E: electric field, capital letters indicate characteristic value
Onset of rotating convection with imposed field

- Rotation impedes convection
- Magnetic field impedes convection
- Both combined are less retarding when $\Lambda \sim 1$

Magnetostrophic balance – different approach

\[2\rho \Omega \times u \sim j \times B \]

\[j = \mu_0^{-1} \nabla \times B \quad J \sim \mu_0^{-1} B/\ell_B \]

\[B^2/2\mu_0 \sim \rho \Omega U \ell_B \]

(1) Use your preferred scaling law for U
(2) Make some assumption about \(\ell_B \)

Power-controlled magnetic field strength

Power generated by buoyancy per unit volume:

\[P \sim \rho g \alpha U_r \delta T \sim \frac{q_c}{H_T} \]

Convected heat flux \(q_c = \rho c_p U_r \delta T \).

Temperature scale height \(H_T^{-1} = \alpha g / c_p \).

Ohmic dissipation per unit volume:

\[D_{\text{ohm}} \sim \frac{j^2}{\sigma} \sim \frac{\eta B^2}{(\mu_0 \ell_B^2)} \]

\(\eta \): magnetic diffusivity, \(\ell_B \): magnetic field length scale. Fraction \(f_{\text{ohm}} \) of total power dissipated ohmically (rather than viscously)

\[B^2/2\mu_0 \sim f_{\text{ohm}} \ell_B^2/\eta \left(\frac{q_c}{H_T} \right) \]
Power-controlled field strength

\[E_{\text{mag}} = \frac{B^2}{2\mu_o} \sim f_{\text{ohm}} \frac{l_B^2}{\eta} \left(\frac{q_c}{H_T} \right) \]

(1) \[\frac{l_B^2}{\eta} = f_1 (U/D, \Omega) \quad \text{assume} \quad \frac{l_B^2}{\eta} \sim (U/D)^{-1} \]

\[\text{equivalent to} \quad \frac{l_B}{D} \sim R_m^{-1/2} \]

(2) \[R_o = \frac{U}{D \Omega} \sim (Ra_{q*})^\gamma \]

\[\gamma = \frac{1}{3} \ (\text{Mixing l.}) \quad E_{\text{mag}} \sim f_{\text{ohm}} \rho^{1/3} \left(\frac{q_c D}{H_T} \right)^{2/3} \]

\[\gamma = \frac{1}{2} \ (\text{MAC}) \quad E_{\text{mag}} \sim f_{\text{ohm}} D \left(\frac{q_c \rho \Omega}{H_T} \right)^{1/2} \]

\[\gamma = \frac{2}{5} \ (\text{CIA}) \quad E_{\text{mag}} \sim f_{\text{ohm}} \rho^{2/5} \Omega^{1/5} D^{4/5} \left(\frac{q_c}{H_T} \right)^{3/5} \]
Non-dimensional scaling laws

Many different ways to non-dimensionalize possible. Here use "rotational scaling":

\[
E^{m}_{\Omega} := \frac{E_{\text{mag}}}{\rho \Omega^{2}D^{2}} \quad q_{\Omega} := \frac{q_{c}}{\rho \Omega^{3}D^{3}}
\]

\[
E^{m}_{\Omega} \sim f_{\text{ohm}} \left(q_{\Omega} \frac{D}{H_{T}} \right)^{p} \sim f_{\text{ohm}} \left(Ra_{q}^{*} \right)^{p}
\]

where

\(p = 2/3 \) mixing length balance (\(\gamma = 1/3 \))
\(p = 1/2 \) MAC balance (\(\gamma = 1/2 \))
\(p = 3/5 \) CIA balance (\(\gamma = 2/5 \))
Thermodynamic efficiency

\[E_{\text{mag}} = \frac{B^2}{2\mu_0} \sim f_{\text{ohm}} \rho^{1/3} \left(q_c \frac{D}{H_T} \right)^{2/3} \]

So far, balance power generation / ohmic dissipation treated locally. Global balance more likely in dynamos with large-scale field. Complication: \(q_c, \rho \) and \(H_T \) vary with radius. Assumption: volume average is meaningful \(\Rightarrow \) efficiency factor \(F \)

\[
F^{2/3} = \frac{1}{V} \int_{r_i}^{R} \left(\frac{q_c(r)}{q_o} \frac{L(r)}{H_T(r)} \right)^{2/3} \left(\frac{\rho(r)}{\bar{\rho}} \right)^{1/3} 4\pi r^2 dr
\]

Dim: \[E_{\text{mag}} = c f_{\text{ohm}} \rho_o^{1/3} (Fq_o)^{2/3} \]

Non-dim: \[E^m = c f_{\text{ohm}} (Fq)^{2/3} \]

\(F \) can be calculated for a given structural model of planet/star.

\(q_o, \rho_o \): reference values, \(c \): constant of proportionality.
Test of scaling laws

A large number of numerical dynamo simulations is now available, which cover a sufficiently wide range in parameter space, to test scaling laws.

\[10^{-6} \leq E \leq 10^{-3} \quad 0.06 \leq Pm \leq 15 \quad 0.1 \leq Pr \leq 10\]

Select dynamo models with a dipole-dominated magnetic field.

Use only cases with significantly supercritical convection (\(Nu > 2 \)) to test scaling laws.
Rossby number scaling

Symbol shape: different
Ekman number (viscosity vs. rotation)

Color: different magn.
Prandtl # (viscosity / magnetic diffusivity)

Green-rimmed symbols for fixed heat flux

Best agreement with CIA-scaling theory

Christensen & Aubert, 2006 (updated)
Magnetic energy scaling

Symbol shape: different

Ekman number (viscosity vs. rotation)

Color: different magn. Prandtl # (viscosity / magnetic diffusivity)

f_{ohm} recorded in each model run (0.3 – 0.8)

Best agreement with mixing length theory

Christensen & Aubert (2006), Christensen et al. (2009), Takahashi et al. (2008)
Interim conclusion

Results for different Ekman number, Prandtl number and magnetic Prandtl number nearly collapsed on single line \(\Rightarrow \) viscosity, diffusivities and rotation play no role.

A weak residual dependence on the magnetic Prandtl number may exist.

Conflict between best fitting exponents for \(\text{Ro} \) and for \(E_{\text{mag}} \).
Scaling versus dynamo models

Test of recipe for calculating F-factor

Green: „Compositional convection“ – zero flux on outer boundary

Different non-dimensionalizations

- Magnetic scaling:
 \[q' = q_o R^3/\rho \eta^3 \]
 \[E^m = B^2 R^2/2 \mu_o \rho \eta^2 \]
 - Elsasser number

- Magneto-rotational scaling:
 \[q' = q_o/\rho (\Omega \eta)^{3/2} \]
 \[E^m = B^2/2 \mu_o \rho \Omega \eta \]
 - Elsasser number

- Critical Rayleigh number scaling:
 \[q' = q_o R^{1/3}/\rho \Omega^{4/3} \nu^{-1/3} \kappa^{2} \]
 \[E^m = B^2 R^{2/9}/2 \mu_o \rho \Omega^{8/9} \nu^{-2/9} \kappa^{4/3} \]
 - Elsasser number
Ohmic dissipation time

\[\tau_\eta = \frac{E_{\text{mag}}}{D_{\text{ohm}}} \sim \frac{\ell_B^2}{\eta} \]

Non-dimensional:

\[\tau_\eta^* = \tau_\eta \left(\frac{\eta}{D^2} \right) \sim \left(\frac{\ell_B}{D} \right)^2 \]

see also Christensen & Tilgner (2004)
Ohmic dissipation time

Dependence of τ_η^* on „magnetic Ekman number“ $E_\eta = E/Pm$ implies (weak) dependence of τ_η on Ω

$$\tau_\eta \sim \ell_B^2/\eta \sim (D/U)^{5/6} \Omega^{-1/6}$$

This, combined with a 2/5-power law for the Rossby number, gives exactly the 1/3-power law for the magnetic energy density.
What is the role of rotation?

So far, we considered only rapidly rotating dynamos. What changes when inertial forces can compete with the Coriolis forces?

⇒ Field morphology changes
Magnetic field morphology

Ra/Ra_c = 114 E=10^{-5} Pm=0.8
Rm = 914 Ro_\ell = 0.12

Ra/Ra_c = 161 E=10^{-5} Pm=0.5
Rm = 917 Ro_\ell = 0.21

Earth

Harmonic degree
Power

Dipole

dipolar dynamo

multipolar dynamo
The local Rossby number

Inertial vs. Coriolis force:

Rossby number Ro_ℓ calculated with mean length scale ℓ in the kinetic energy spectrum

$$Ro_\ell = \frac{U}{\Omega \ell}$$

Regime boundary at $Ro_\ell \approx 0.12$

Nusselt number scaling: rotating convection in a box

Rotating convection in cartesian geometry:

\[\text{Nu} \sim \text{Ra}^{6/5} \quad \text{for} \quad \text{Ra}_{\text{crit}} < \text{Ra} < \text{Ra}_t \]
\[\text{Nu} \sim \text{Ra}^{2/7} \quad \text{for} \quad \text{Ra} > \text{Ra}_t \]

at \(\text{Ra} = \text{Ra}_t \) thickness of thermal boundary layer \(\approx \) Ekman layer

(King et al., Nature, 2009)
Heat transfer scaling: dynamos

Transition Rayleigh #
\[\text{Ra}_t \sim E^{-7/4} \]

Normalized Nusselt #
\[\text{Nu}' = \frac{\text{Nu}}{\text{Ra}_t^{2/7}} \]

Transition in Nusselt number nearly coincident with dipole – multipole transition.

\[\frac{\text{Ra}_t}{\text{Ra}_{\text{crit}}} \approx 100 \quad \text{at } E = 10^{-5} \]
\[\frac{\text{Ra}_t}{\text{Ra}_{\text{crit}}} \approx 10^5 \quad \text{at } E = 10^{-14} \]
Application to celestial dynamos

Use structural models to evaluate

\[F^{2/3} = \frac{1}{V} \int_{r_i}^{R} \left(\frac{q_c(r)}{q_o} \frac{L(r)}{H_T(r)} \right)^{2/3} \left(\frac{\rho(r)}{\bar{\rho}} \right)^{1/3} 4\pi r^2 dr \]

setting the length scale \(L = \min(D, H_\rho) \)

Jupiter \(F = 1.1 \)

Earth’s core \(F = 0.27 – 0.52 \)

Stars \(F = 0.78 – 1.14 \)

<...>: volume average, D: dynamo layer thickness, \(H_\rho \): density scale height

Christensen et al. (2009)
From surface to interior field

Observations tell us about the field at the surface of the dynamo (or only its long-wavelength part). The scaling law makes a prediction about the mean internal field.

How are they related?

⇒ Use results from dynamo models for ratios:

\[\frac{B_{\text{interior}}}{B_{\text{surface}}} \approx 2.5 - 5.5 \quad (3.5 \text{ nominally}) \]

\[\frac{B_{\text{interior}}}{B_{\text{dipole}}} \approx 4 - 20 \quad (7 \text{ nominally}) \]
Field strength scaling of planets

• Mercury is slow rotator & predicted to be in multi-polar regime. Energy flux unknown.
• In Saturn and in Mercury the dynamo may operate below a stably stratified conducting layer of unknown thickness.
• Uranus’ and Neptune’s dynamos may operate in thin convecting shell above stable fluid region.
• Perhaps only Earth and Jupiter have "simple" dynamos (i.e. in a deep convecting shell without shielding stable layer).
Application of field strength scaling law to stars

Problems with sun:

• Slow rotation
• Large scale field not dominant
• Tachocline may lead to different type of dynamo

Fully convective, rapidly rotators more suitable

• Low-mass M-dwarfs (M < 0.35 M\text{sun})
• T-Tauri stars (Pre-main sequence, contracting)
M-dwarfs: surface field vs. rotation

Observed field strength of M-dwarfs

Field strength increases with rotation rate but saturates at $Ro < 0.1$

Stellar field morphology

V374 Peg
M = 0.28 M_{sun} Rotation period 0.45 d
Field mapped by Zeeman Doppler tomography
Donati et al. (2006,2008)

Slowly rotating solar-type stars: small-scale fields

Rapidly rotating low-mass stars: significant large scale field component
From planets to stars

The observed field of rapidly rotating low-mass stars agrees with the prediction as well as that of Jupiter and Earth ⇒ confirmation for scaling law ⇒ dynamos in planets and (some) stars may be similar
Add slowly rotating stars

Slowly rotating K- and G-stars fall below the prediction.

Rapid rotation seems the essential prerequisite for the applicability of the scaling law.

Christensen et al. (2009)
Summary

• In dipole-dominant natural dynamos with rapid rotation magnetic field strength is controlled by the energy flux and is independent of rotation rate, conductivity and viscosity.

• For slow rotation ($Ro_{local} > 0.1$) the field is weaker and multipolar.

• The predictions of the scaling law for B agree with Earth‘s and Jupiter‘s field strength and with the field strength of rapidly rotating low-mass stars.

• In several solar system planets, thin convective shells or stably stratified layers could make a comparison difficult.

• Strong and possibly observable magnetic fields are predicted for rapidly rotating brown dwarfs and massive extrasolar planets.
Busse, FH, Phys. Earth Planet. Inter, 12, 350 (1976).