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Motivation

Turbulent accretion disks require the presence of an efficient
mechanism for angular momentum transport
Many mechanisms have been investigated and found wanting

I Shear instabilities
I Barotropic instabilities (Dubrulle et al)
I Baroclinic instabilities (Knobloch, Spruit)
I Sound waves (Glatzel, Kaisig)
I Shock waves (Spruit)
I Finite amplitude instabilities (Dubrulle, Longaretti, Zahn)
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Motivation

Magnetic field-induced instabilities appear most promising

Magnetorotational instability has several appealing properties (Balbus
and Hawley 1991, 1998)

I It is a linear instability
I It is triggered by weak poloidal magnetic field
I It is axisymmetric
I It occurs in Rayleigh-stable regime when the angular velocity decreases

radially
I It grows on a dynamical timescale
I It is fundamentally a local instability

Efficiency of angular momentum transport depends on the saturation
of the MRI

Central question: how does the MRI saturate?
This is a nonlinear problem!

Is the saturated state perhaps a dynamo? Lesur and Ogilvie (2008)
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Ideal MRI

The basic equations are

ρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇p − 1

2µ0
∇B2 +

1

µ0
(B · ∇)B,

∂B

∂t
+ (u · ∇)B = (B · ∇)u,

∇ · u = ∇ · B = 0.

These equations have a basic axisymmetric solution of the form

u0 = [0,V (r), 0], B0 = [0,Bφ(r),Bz(r)]

in (r , φ, z) coordinates.

Edgar Knobloch (UC Berkeley) MRI March 2009 5 / 53



Ideal MRI: eigenvalue relation

We look at axisymmetric perturbations of the form
f (r , φ, z , t) = f (r) exp i(nz + ωt). For given basic state and n the
(complex) frequency ω is an eigenvalue of the problem (Acheson 1973)

d

dr

[
(ω2 − n2V 2

z )

(
du

dr
+

u

r

)]
− n2

[
ω2 − n2V 2

z + r
d

dr

(
V 2

φ

r2
− V 2

r2

)]
u

= −4n2

r2

(nVφVz + ωV )2

(ω2 − n2V 2
z )

u,

where

V 2
φ =

B2
φ

µ0ρ
, V 2

z =
B2

z

µ0ρ
.

The azimuthal magnetic field plays an important role

the gradient d(V 2
φ/r

2)/dr competes with d(V 2/r2)/dr

prevents the problem from being an eigenvalue problem for ω2 alone
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Ideal MRI: general properties of the eigenvalue relation

With the boundary conditions u(a) = u(b) = 0 we have

Case (i) Vz = 0, Vφ 6= 0, giving

d

dr
r
du

dr
− n2

ω2

[
ω2

(
1 +

1

n2r2

)
+ r

d

dr

(
V 2

φ

r2

)
− 1

r3

d

dr
r2V 2

]
ru = 0.

Multiplying by u∗ and integrating over a ≤ r ≤ b yields

ω2 =
n2

D

∫ b

a

[
1

r2

d

dr
r2V 2 − r2 d

dr

(
V 2

φ

r2

)]
|u|2 dr ,

where

D ≡
∫ b

a

(
r |du

dr
|2 +

|u|2

r
+ n2r |u|2

)
dr > 0.

Thus ω2 is real and hence instability requires ω2 < 0. A sufficient
condition for stability is therefore

1

r2

d

dr
r2V 2 − r2 d

dr

(
V 2

φ

r2

)
> 0.
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Ideal MRI: Case (i) ctd

In fact this condition is also necessary (Tayler 1973, Chanmugam 1979). A
necessary condition for instability is

1

r2

d

dr
r2V 2 − r2 d

dr

(
V 2

φ

r2

)
< 0

somewhere in a < r < b. This is a magnetic curvature instability.
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Ideal MRI: general properties of the eigenvalue relation

Case (ii) Vz = const 6= 0, Vφ = 0. In this case

(ω2 − n2V 2
z )2 =

n2

D

∫ b

a

[
ω2

r2

d

dr
r2V 2 − r2n2V 2

z

d

dr

(
V 2

r2

)]
|u|2 dr .

Again ω2 must be real (Chandrasekhar 1960). We see that if the disk is
hydrodynamically stable

sufficient condition for stability is that d(V 2/r2)/dr > 0 in a < r < b

necessary condition for instability is that d(V 2/r2)/dr < 0
somewhere in a < r < b

This is the classical MRI of Velikhov (1959) and Chandrasekhar (1960);
see also Acheson (1973), Acheson and Hide (1973), Balbus and Hawley
(1991), Knobloch (1992).
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Ideal MRI: general properties of the eigenvalue relation

Case (iii) Vz = const 6= 0, Vφ 6= 0. In this case

d

dr
r
du

dr
− u

r
− n2ru =

n2

(ω2 − n2V 2
z )2

[
r2 d

dr

(
V 2

φ − V 2

r2

)
(ω2 − n2V 2

z )− 4

r
(nVφVz + ωV )2

]
u.

For unstable, exponentially growing modes (ω = −iλ, λ > 0) we obtain

(λ2+n2V 2
z )2 =

n2

D

∫ b

a

[
r2 d

dr

(
V 2

φ − V 2

r2

)
(λ2+n2V 2

z )+
4

r
(nVφVz−iλV )2

]
|u|2 dr .

It follows that

a necessary condition for an exponential instability is∫ b

a

1

r
VφV |u|2 dr = 0,

i.e., Vφ or V (or both) must change sign somewhere in a < r < b.
Thus this kind of instability is not to be expected.
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Ideal MRI: Case (iii) ctd

Instead we find

exponentially growing oscillations (overstability, or Hopf bifurcation)
this is because the magnetic helicity in the basic state breaks the
reflection symmetry z → −z (Knobloch 1992, 1996)
generic bifurcation with the resulting SO(2) symmetry is a Hopf
bifurcation to traveling waves (eg. Ecke et al 1992)
these TW have recently been observed in the PROMISE experiment
(Stefani et al 2006, 2007)
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Ideal MRI: general properties of the eigenvalue relation

These waves have the same properties as other unidirectional waves in
bounded domains (Tobias et al 1997, 1998)

Case (iv) Vz = Vz(r), Vφ 6= 0. In this case the structure of the problem is
changed dramatically because of the presence of critical layers at locations
where ω = ±nVz(r). Such critical layers can absorb and partially reflect
incoming wavetrains and produce global instability modes
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Evolution of the ideal MRI

What do we want to know?

What happens in a disk (or experiment) that is MRI-unstable?

How does the MRI saturate?

Efficiency of angular momentum transport (outwards/inwards?)
I Experiment
I Numerical simulation
I Theory

Are the hypotheses behind the formulation satisfied?
I Can the MRI be treated as an ideal mhd problem?
I Is it reasonable to neglect compressibility, disk thickness etc?
I What are the limitations of the simulations, the theory, the

experiments?
I Is the theory relevant to astrophysics?
I Are the experiments relevant to astrophysics?

Edgar Knobloch (UC Berkeley) MRI March 2009 13 / 53



Experiments

Lathrop group: Sisan et al PRL 2004
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Experiments

Lundquist number

Edgar Knobloch (UC Berkeley) MRI March 2009 15 / 53



Numerical simulations: shearing box geometry

Balbus-Hawley 1991a,b: Thin sheets of matter moving radially
inwards and outwards
X-points suggest reconnection process important to saturation
Goodman & Xu 1994, Pessah & Goodman 2009: shear instabilities of
the interpenetrating sheets
Sano et al 1998: whether saturation occurs depends on the Elsasser
number Λ ≡ v2

A/ηΩ
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Numerical simulations

Sano et al: compressible flow in shearing box geometry

Global geometry: Kersalé et al 2004, 2006; Cattaneo et al (still
eagerly awaited!)
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Numerical simulations
Fromang and Papaloizou (2007):

Investigated numerical diffusion of both velocity and magnetic fields
in a shearing box with zero net flux using ideal MHD and ZEUS:
Pm ≡ νnum/ηnum > 1
Found that rate of angular momentum transport α declined as
resolution was increased
Concluded that it is important (!) to explicitly include resolved
physical dissipation

Fromang et al (2007):

Constant Re: angular momentum transport increases with Pm
Constant Pm > 1: turbulent transport α subsides as Re decreasesEdgar Knobloch (UC Berkeley) MRI March 2009 18 / 53



Numerical simulations
Lesur and Longaretti (2007): incompressible shearing box

turbulent transport α is not correlated with dimensionless linear
growth rate “contrary to a widely held expectation” (!)
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Formulation of a Model Problem: Knobloch & Julien 2005

Shearing box approximation at r∗ with local angular velocity Ω∗(r∗)ẑ:

Straight channel: −L∗/2 ≤ x∗ ≤ L∗/2, −∞ < y∗ <∞,
−∞ < z∗ <∞
Linear shear: U0

∗ = (0, σ∗x∗, 0)

Constant B-Field: B0
∗ = (0,B∗

tor ,B
∗
pol)

Perturb: u ≡ (u, v ,w) = (−ψz , v , ψx), b ≡ (a, b, c) = (−φz , b, φx)

Axisymmetric Equations

∇2ψt + 2Ωvz + J(ψ,∇2ψ) = v2
A∇2φz + v2

AJ(φ,∇2φ) + ν∇4ψ, (1)

vt − (2Ω + σ)ψz + J(ψ, v) = v2
Abz + v2

AJ(φ, b) + ν∇2v , (2)

φt + J(ψ, φ) = ψz + η∇2φ, (3)

bt + J(ψ, b) = vz − σφz + J(φ, v) + η∇2b, (4)

where J(f , g) ≡ fxgz − fzgx .

vA ≡ B∗
pol/

√
µ0ρ∗U

∗, Ω, ν, η are the dimensionless Alfvén speed,
rotation rate, kinematic viscosity and ohmic diffusivity
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Remarks on the Model Problem

Local shearing box approx’n ⇒ special properties of model eqs:

Toroidal field B∗
tor drops out

I suppression of hoop stresses
I toroidal field remains in the radial pressure balance

2Ω∗V ∗
0 +

V ∗2
0

r∗
=

1

ρ∗
dP∗

0

dr∗
+

d

dr∗

(
B∗2

tor

2µ0ρ∗

)
+

B∗2
tor

µ0ρ∗r∗
(5)

no distinction between inward and outward directions

I symmetry x → −x , (ψ, v , φ, b) → −(ψ, v , φ, b)
I direction of accretion and angular momentum flux must be imposed

externally

MRI is an exponentially growing instability

I this is not the case in polar coordinates with nonzero B∗
tor
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Linear Theory

Linearization about the trivial state ψ = v = φ = b = 0:

Perturbation exp[λt + ikx + inz ], p = k2 + n2 ⇒ dispersion relation

p[(λ+νp)(λ+ηp)+v2
An2]2+2Ωn2[(λ+ηp)2(2Ω+σ)+σv2

An2] = 0. (6)

Conventional view of MRI: positive growth rate λ achieved for
sufficiently large vertical wavenumbers n whenever σ < 0, vA 6= 0,
provided only that ν, and η are sufficiently small

I For ν = η = 0

λ2 = − v2
An2σ

2Ω + σ
+ O(v4

An4). (7)

I For λ = 0 threshold for instability exists. For small ν, η critical Elsasser
number

Λc ≡ v2
A/Ωη = η

(
2Ω + σ

Ωσ

)
p2

n2
+ O(ν, η)3. (8)

I Reconnection effects described by finite η are more important for
stabilizing the system against the MRI than viscosity.
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Scaling Assumptions

Traditional approach to nonlinear saturation: weakly nonlinear theory
with (Λ− Λc)/Λc � 1 (eg. Umurhan & Regev 2007)

Our approach: strongly nonlinear theory
I shear is the dominant source of energy for the MRI
I MRI itself requires the presence of a (weaker) vertical magnetic field
I dissipative effects are weaker still but cannot be ignored since they are

ultimately responsible for the saturation of the instability

Hence scaling:
I rapid rotation, strong shear: (Ω, σ) = ε−1(Ω̂, σ̂)
I magnetic field: vA = 1 i.e. , U∗ = v∗A ≡ B∗

pol/
√
µ0ρ∗

I weak dissipative processes: (ν, η) = ε(ν̂, η̂)
I thin fingers, strong growth: ∂x → ∂x , ∂z → ε−1∂z , ∂t → ε−1∂t

In the following we take ε� 1, or equivalently
Rm � S � max(1,Pm), while Λ = O(1). Here Rm = |σ∗|L∗2/η∗,
Pm = ν∗/η∗, S ≡ v∗AL∗/η∗ are the magnetic Reynolds, magnetic
Prandtl and Lundquist numbers.
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Relation to Lathrop’s Experiment

Our scaling goes through the plane as Rm ∼ S2
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Scaled Equations

In parallel with the above assumptions we need to make further
assumptions about the relative magnitude of the various fields:
we find (ψ, φ) → ε(ψ, φ), (v , b) → ε−1(v , b) leads to a self-consistent
set of reduced pdes
scaled pdes:

ε
D

Dt

(
∂2

x + ε−2∂2
z

)
ψ + 2ε−3Ω̂vz = v2

A

(
∂2

x + ε−2∂2
z

)
φz + (9)

εv2
AJ
(
φ,
(
∂2

x + ε−2∂2
z

)
φ
)

+ ε2ν̂
(
∂2

x + ε−2∂2
z

)2
ψ

ε−1 D

Dt
v − ε−1(2Ω̂+ σ̂)ψz = ε−2v2

Abz + ε−1v2
AJ(φ, b)+ ν̂(∂2

x + ε−2∂2
z )v

(10)

ε
D

Dt
φ = ψz + ε2η̂(∂2

x + ε−2∂2
z )φ (11)

ε−1 D

Dt
b = ε−2vz − ε−1σ̂φz + ε−1J(φ, v) + η̂(∂2

x + ε−2∂2
z )b, (12)

where D/Dt = ∂t + J[ψ, •].
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Derivation of Reduced PDEs

To solve the scaled equations we suppose
ψ(x , z , t) = ψ0(x , z , t) + εψ1(x , z , t) + . . . , etc.

Deduction: Leading order azimuthal fields v0, b0 represent large-scale
adjustment to background shear and toroidal field due to MRI

I From Eqs for azimuthal fields v , b at O(ε−2) and poloidal fields ψ at
O(ε−3)

v2
Ab0z + ν̂v0zz = 0, v0z + η̂b0zz = 0, 2Ω̂v0z = 0 (13)

I Hence
v0 = V (x , t), b0 = B(x , t) (14)

I Averaging in t at O(ε−1) ⇒ slow time evolution. Hence

v0 = V (x), b0 = B(x) (15)
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Derivation of Reduced PDEs, cont’d
From Eqs for azimuthal fields v , b at O(ε−1) and poloidal fields ψ, φ at
O(ε−2), O(1)

ψ0zzt + 2Ω̂v1z = v2
Aφ0zzz + ν̂ψ0zzzz (16)

v1t − (2Ω̂ + σ̂ + V ′(x))ψ0z = v2
Ab1z − v2

AB ′(x)φ0z + ν̂v1zz (17)

φ0t = ψ0z + η̂φ0zz (18)

b1t − ψ0zB
′(x) = v1z − (σ̂ + V ′(x))φ0z + η̂b1zz (19)

Closure requires determination of V ′(x),B ′(x).

I Averaging Eqs for azimuthal fields v , b at O(1) in z , t and integrating
gives

ν̂V ′(x) = ψ0v1z − v2
Aφ0b1z + C1 (20)

η̂B ′(x) = ψ0b1z − φ0v1z + C2 (21)

C1 is determined by BC’s; 0 < C2 < Cmax range of total to zero support of
disk by radial pressure gradient.
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Strongly Nonlinear Single-Mode Solutions

These equations have stationary solutions of the form

ψ0 =
1

2
(Ψ(x) e inz + c.c.), v1 =

1

2
(V(x) e inz + c.c.), (22)

φ0 =
1

2
(F(x) e inz + c.c.), b1 =

1

2
(B(x) e inz + c.c.),

where
F =

iΨ

η̂n
, (23)

V =
(v2

A + η̂2n2)V ′ + η̂2n2(2Ω̂ + σ̂) + v2
Aσ̂

nη̂(v2
A + ν̂η̂n2)

iΨ, (24)

B =
i(v2

A + ν̂η̂n2)B ′ + n(ν̂(σ̂ + V ′)− η̂(2Ω̂ + σ̂ + V ′))

nη̂(v2
A + ν̂η̂n2)

Ψ, (25)

and we obtain the nonlinear dispersion relation

2Ω̂[(v2
A + η̂2n2)V ′ + (2Ω̂ + σ̂)η̂2n2 + σ̂v2

A] + n2(v2
A + ν̂η̂n2)2 = 0. (26)

Except for the presence of the additional shear rate V ′ this is nothing
but the dispersion relation for the MRI in our scaling regime
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Nonlinear Dispersion Relation

For each wavenumber n the dispersion relation determines V ′

2Ω̂[(v2
A + η̂2n2)V ′ + (2Ω̂ + σ̂)η̂2n2 + σ̂v2

A] + n2(v2
A + ν̂η̂n2)2 = 0

Parameters: bΩ = 1, vA = 1, bν = bη = 1, and bσ = −1.5,−1,−0.5 (solid, dashed, dashed-dot).

The decrease in n with increasing V ′ indicates coarsening as the MRI saturates.

Edgar Knobloch (UC Berkeley) MRI March 2009 29 / 53



Single-Mode Solutions: Closure

Closure requires the determination of V ′,B ′ as a function of Ψ. Since

ψ0 =
1

2
(Ψ(x) e inz + c.c.), v1 =

1

2
(V(x) e inz + c.c.), (27)

φ0 =
1

2
(F(x) e inz + c.c.), b1 =

1

2
(B(x) e inz + c.c.),

we find
V ′(x) =

C1 − 1
2β|Ψ|

2

ν̂ + 1
2α|Ψ|2

, B ′(x) =
η̂C2

η̂2 + 1
2 |Ψ|2

. (28)

α =
ν̂v2

A + η̂3n2

η̂2(v2
A + ν̂η̂n2)

, β =
(2Ω̂ + σ̂)η̂3n2 + v2

A(σ̂ν̂ − 2Ω̂η̂)

η̂2(v2
A + ν̂η̂n2)

. (29)

MRI requires C1 = 0 for nonzero V ′ and Ψ
Nonlinear dispersion relation then gives the saturated value of |Ψ|:

|Ψ|2 = −
2ν̂η̂2

[
n2(v2

A + ν̂η̂n2)2 + 2Ω̂σ̂v2
A + 2Ω̂(2Ω̂ + σ̂)η̂2n2

]
[
4Ω̂2v2

Aη̂ + n2
(
v2
A + ν̂η̂n2

) (
ν̂v2

A + η̂3n2
)] (30)

This bifurcation equation determines the saturation amplitude
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Single Mode Results I

Parameters: bΩ = −2bσ/3, bν = bη = 1, and bσ = −100,−10,−1 (dashed-dot, dashed, solid)

Maximum growth rate λ and V ′ increases with vA, whereas associated wavenumber n and
saturation level |Ψ| peaks

Increasing n initially gets around stabilizing Lorentz force but once MRI flow is capable of
slipping through the field further increase in n is of no benefit
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Single Mode Results II

Parameters: bΩ = −2bσ/3, vA = bη = 1, and bν = 10−6, 1, 10 (solid, dashed, dashed-dot)

V ′ increases rapidly with shear rate |bσ| while n, λ, |Ψ| saturate. This is a consequence of
the reduced role of the Coriolis force

Saturation values increase with bν indicating subtle role of viscosity in nonlinear regime,
c.f. linear regime. Larger viscosity transports more ang. mtm., competing with magnetic
stresses
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Single Mode Results III

Parameters: bΩ = −2bσ/3, vA = bν = 1, and bσ = −100,−10,−1 (dashed-dot, dashed, solid)

For small bη, bν MRI grows on the dynamical timescale. As bη increases growth and
wavenumber decrease but saturation level of |Ψ| increases
Behavior consistent with the idea that reconnection reduces the effect of Lorentz force
and thus enhances the amplitude of MRI. This does not translate into increased V ′ (i.e.
modification of background shear)

Edgar Knobloch (UC Berkeley) MRI March 2009 33 / 53



Approach to Saturated State

Time-dependent evolution of an x-invariant single-mode perturbation
indicates approach to predicted stationary solution

Above results display extreme cases: disks supported entirely by
mechanical (B ′ = 0) or magnetic (B ′ 6= 0) pressure

νt = 2πε|Ψ| ∼ O(ε): turbulent viscosity associated with developed
MRI
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A different scaling

We now suppose that

(ν, η) = ε(ν̂, η̂), (Ω, σ) = δ−1(Ω̂, σ̂), (n, λ) = δ−1(n̂, λ̂), (31)

where ε� 1, δ � 1. We also pose a multiple scales expansion in the x
direction with ∂x replaced by δ−1∂x + ∂X , where X = δx . In addition,
vertical derivatives are large, ∂z → δ−1∂z , as are time derivatives
∂t → δ−1∂t . In all cases we choose the characteristic scales by taking
vA ≡ 1 although vA is retained in the equations to label terms involving
the magnetic field. In addition we take (ψ, φ) → δ1/2ε1/2(ψ, φ) and
(v , b) → δ−1(v , b). We define

f (x ,X , z , t) = f (X ) + f ′(x ,X , z , t), f ′ = 0,

where the overbar denotes the average in both space 〈 〉V and time 〈 〉t ,

f (X ) ≡ 〈〈f (x , z ,X , t)〉V 〉t := lim
τ,V→∞

1

τV

∫
τ,V

f (x , z ,X , t)dxdzdt. (32)
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Averaged and fluctuating equations

Averaging the equations for the toroidal fields yields the mean azimuthal
equations

ε
1
2 δ

1
2 JX (ψ, v) = ε

1
2 δ

1
2 v2

AJX (φ, b) + εδν̂∂2
X v , (33)

ε
1
2 δ

1
2 JX (ψ, b) = ε

1
2 δ

1
2 JX (φ, v) + εδη̂∂2

Xb, (34)

where JX (f , g) ≡ ∂X f ∂zg − ∂z f ∂Xg .

The fluctuating equations are obtained by subtraction.

All the fields ψ, v , φ, b are now expanded as follows

ψ =
∑
i ,j

εi/2δj/2ψij

and the results substituted in both the averaged and the fluctuating
equations. The reduced equations that result depend on whether we take
ε = O(δ) or ε = o(δ). In the former case small scale nonlinear terms as
well as the dissipative terms all remain (Jamroz et al 2008a). In the latter
case these terms are all subdominant.
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Reduced fluctuating equations for Λ � 1

When ε = o(δ), or equivalently Λ � 1, the leading order equations are
quasilinear

∇̃2ψ′00t + 2Ω̂v ′11z = v2
A∇̃2φ′00z (35)

v ′11t −
(
2Ω̂ + σ̂ + ∂X v00

)
ψ′00z = v2

A

(
b′11z − ∂Xb00φ

′
00z

)
(36)

φ′00t = ψ′00z (37)

b′11t − ∂Xb00ψ
′
00z = v ′11z − (σ̂ + ∂X v00)φ

′
00z . (38)

In these equations ∇̃ ≡ (∂x , 0, ∂z) and hence full spatial dependence is
retained.
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Saturation when Λ � 1
The asymptotic analysis captures the feedback via the local large scale
quantities ∂X v00, ∂Xb00. These are determined from the averaged
equations:

ν̂∂XX v00 = −∂X

(
ψ′00zv

′
11 − v2

Aφ
′
00zb

′
11

)
, (39)

η̂∂XXb00 = −∂X

(
ψ′00zb

′
11 − φ′00zv

′
11

)
. (40)

We are permitted to integrate once to obtain explicitly the quantities
needed to close the system,

ν̂∂X v00 = −ψ00zv11 + v2
Aφ00zb11 (41)

≡ u00v11 − v2
Aa00b11,

η̂∂Xb00 = −ψ00zb11 + φ00zv11 + C (42)

≡ u00b11 − a00v11 + C .

Here C is determined by radial force balance across the channel in the
saturated state.
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Solution of the reduced system when Λ � 1

The reduced system with C = 0 is solved in a box of size LX ×NzL, where
Nz is the number of wavelengths, L = 2π/n̂max, of the fastest growing
linear mode and LX ∼ δ−1 is the large horizontal scale upon which the
imposed background shear gradients σ̂ and gradients of associated
feedback responses ∂X v00, ∂Xb00 remain constant. We choose periodic
boundary conditions in the z direction to simulate a vertically infinite
domain, which is appropriate when the vertical instability scale is much
smaller than the vertical pressure scale-height. In the x direction, we
impose periodic boundary conditions as in the shearing-box formulation for
axisymmetric flows.

Simulation mx mz rotation times t LX Lz

SCM 1 - 1000 - -

MCM 1 256 1000 10L 8L

MM 128 256 1000 10L 8L

vA ν̂ η̂ Ω̂ σ̂ L n̂max n̂cutoff n̂box

1 1 1 1 -1.5 52.0 0.968 1.73 0.121
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Single channel mode

With ∂X v00 = ∂Xb00 ≡ 0 the reduced equations admit exponentially
growing solutions of the form (Goodman and Xu, 1994)

ψ00 = Ψ0 (t) cos n̂z , v11 = V0 (t) sin n̂z , (43)

φ00 = Φ0 (t) sin n̂z , b11 = B0 (t) cos n̂z ,

However, within the theory an initial state with n̂ = n̂max and
∂X v00 = ∂Xb00 = 0 develops nonzero ∂X v00, ∂Xb00, resulting in a
transition from exponential growth to algebraic growth in time.
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Single channel mode

Despite unbounded algebraic growth and decay in the single channel mode
〈∂X v00〉V → ∂X v00 as t →∞. Thus 〈∂X v00〉V reaches a stable saturated
state, as does the transport of angular momentum.
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Multiple channel modes

We select a uniform distribution of wavelengths in z spanning a range of
modes from n̂ ≤ 4/(NzL) to twice the cutoff wavelength
Lcutoff ≡ 2π/

√
χ̂ =

√
5L/4. The mode amplitudes are sampled from a

uniform distribution with upper bound 10−4 and exhibit coarsening.
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Multiple channel modes
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Evolution of (a) the rms fields and (b) 〈∂X v00〉V . The results with n̂max

(dotted) and the smallest vertical wavenumber permitted n̂eff (dashed) are
also shown.
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Multiple channel modes
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Multiple channel modes
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Evolution of an x-dependent initial Multiple Mode state
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Multiple channel modes: coarsening
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Subdominant Dissipation

When explicit (ohmic) dissipation εη∇2 is retained (with εη = 0.01) the
algebraic growth of the fluctuations also saturates
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Theory

When the nonlinear terms ∂X v00, ∂Xb00 = 0 are ignored the solution of
the reduced equations is

(Ψ0 (t) ,V0 (t) ,Φ0 (t) ,B0 (t)) ≡
(

1,−2
n̂max

σ̂
,−n̂max, 2

n̂2
max

σ̂

)
eλmaxt .

This solution is in fact an exact solution of the nonlinear fluctuating
equations as obtained by Goodman and Xu (1994). But when these terms
are included the exponential growth becomes algebraic

ψ00 = (Ψ1t
−α + Ψ2 cosωt) cos(n̂z) (44)

v11 = (V1t
α + V2 sinωt) sin(n̂z)

φ00 = (Φ1t
β + Φ2 sinωt) sin(n̂z)

b11 = (B1t
−β + B2 cosωt) cos(n̂z),

where α > 0, β > 0.
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Theory

One finds that α = β = 1/2 with

(Ψ1,V1,Φ1,B1) ≡

(
1,

n̂3v2
A

Ω̂
,−2n̂,−2Ω̂

v2
A

)
Ψ1 (45)

(Ψ2,V2,Φ2,B2) ≡

(
1,−2n̂Ω̂

|ω|
,− n̂

|ω|
,

n̂2

2Ω̂

)
Ψ2,

together with the necessary conditions

∂X v00 = −σ̂ −
v2
An̂2

2Ω̂
, ∂Xb00 = 0, (46)

and

ω =

√
4Ω̂2 + n̂2v2

A. (47)

Equation (47) is the rms mean of the local inertial and Alfvén frequencies.
Substituting the general form of the solutions (44) into the turbulent
stress balance (Eq. (41) with volume averaging) and using the form of the
eigensolutions (45) yields
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Theory

ν̂ 〈∂X v00〉V =
n̂2ω2

2Ω̂
Ψ2

1 −
n̂2ω

8Ω̂
sin 2ωtΨ2

2. (48)

It is remarkable that this expression does not contain secular terms
proportional to t1/2 cosωt, t−1/2 sinωt or indeed t, and hence saturates
despite the algebraic growth of the contributing fields (cf. Landau
damping). The mean component arises from products of the terms

Φ1t
1
2 ,V1t

1
2 and Ψ1t

− 1
2 ,B1t

− 1
2 , while the oscillatory component is a

consequence of the terms (Ψ2,V2,Φ2,B2). On time-averaging this result
and comparing with Eq. (46) we obtain finally

Ψ2
1 =

2ν̂Ω̂

n̂2ω2
∂X v00 =

ν̂v2
A

n̂2ω2

(
−2Ω̂σ̂

v2
A

− n̂2

)
. (49)
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Theory

We can numerically verify the relation (47) by measuring ω for a range of
values of Ω̂, with the remaining parameters fixed.
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(a) Back-reaction saturates the growth of 〈∂X v00〉V , (b) ω(Ω̂)
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Summary

Simple scaling suffices to characterize one-parameter family of
self-consistent equilibrated states

I Strong modification of the background shear that feeds the MRI
I Equilibration ultimately determined by ohmic + viscous dissipation

Comparison with shearing-box simulations (BH 1991, HGB 1995,
Sano et al 1998)

I With resistive effects included but viscosity excluded no saturation
occurs for Λ > 1. Our theory indicates viscosity plays an important role
in this regime (Fromang & Papaloizou 2007)

I Saturated MRI speed is O(1), but the effective viscosity is O(ε)
I Simulations (Hawley & Balbus 1991) show tendency towards solid

body rotation and increased wavelength of MRI. This is also consistent
with the theory
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Relation to astrophysics

We have a theory that is valid in an asymptotic regime relevant to
astrophysical accretion disks

This regime is not accessible to fully resolved simulations

It is expected that accretion disks are in fact turbulent. In this case it
may be possible to take η and ν in the theory to be the turbulent
diffusion coefficients

It would be useful to extend the theory to

Cylindrical geometries to overcome degeneracy in direction of angular
momentum transport

Include compressibility
Details in:
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