Lecture 5: Line Stretching

Statistics of line elements, Lyapunov exponents, F(p) and G(h), the Kraichnan-Kazantsev model, Kraichnan's Gaussian bloblet

Line element stretching: general results

J. Fluid Mech. (1984), vol. 144, pp. 1–11 Printed in Great Britain

Kinematic dynamo problem in a linear velocity field

By YA. B. ZEL'DOVICH, A. A. RUZMAIKIN,

Keldysh Institute of Applied Mathematics, Academy of Sciences of the USSR, Miusskaya ploshchad, Moscow, 125047

S. A. MOLCHANOV AND D. D. SOKOLOFF

Moscow State University, Moscow, 117234

J. Fluid Mech. (1990), vol. 215, pp. 45-59 Printed in Great Britain

45

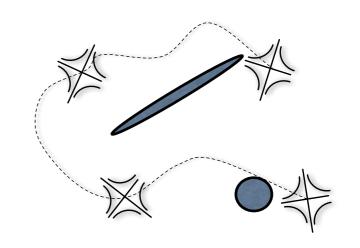
Turbulent stretching of line and surface elements

By I. T. DRUMMOND AND W. MÜNCH

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW, UK

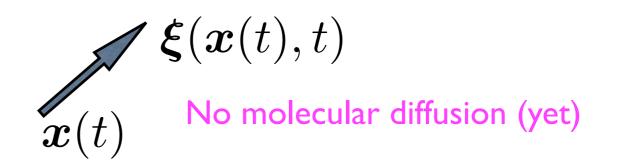
The "local stretching model"

Focus on small scales, and elaborate Townsend's hot-spot model.



Solve the line-element equation:

$$\partial_t \boldsymbol{\xi} + oldsymbol{u} \cdot oldsymbol{
abla} oldsymbol{\xi} = oldsymbol{\xi} \cdot oldsymbol{
abla} oldsymbol{u}$$



In this Lagrangian frame we have a stochastic differential equation:

$$\dot{\boldsymbol{\xi}} = \boldsymbol{W}(t)\boldsymbol{\xi}$$

We desire the statistical properties of line-element lengths.

Notation:
$$\ell(t) = |\boldsymbol{\xi}(t)|$$

$$h(t) \equiv \frac{1}{t} \ln \left(\frac{\ell(t)}{\ell_0} \right)$$

Definition of the Lyapunov exponent

For the moment, we use the definition:

$$\gamma_{\rm Lpv} \equiv \lim_{t \to \infty} \frac{1}{t} \left\langle \ln \left(\frac{\ell(t)}{\ell_0} \right) \right\rangle$$

Using the golden rule for multiplicative processes:

$$\ell_{\rm mp} = \ell_0 e^{\gamma_{\rm Lpv} t}$$

According to Batchelor, all elements would stretch at this rate. This is not exactly true - we need a more complete characterization of stretching statistics.

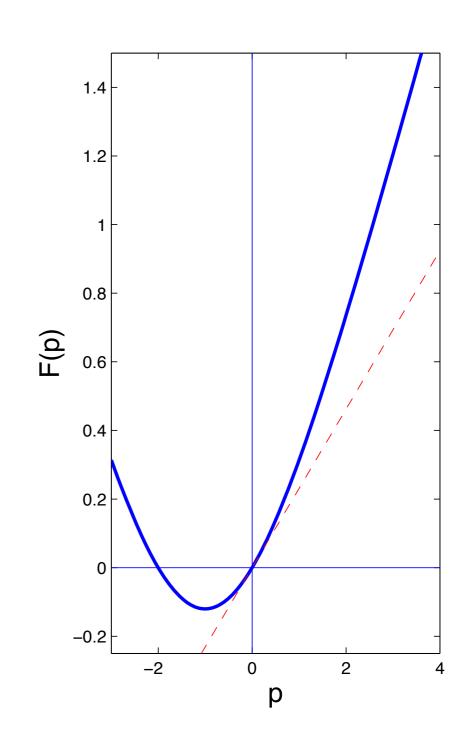
The big picture for line-element stretching

•
$$F(p) \equiv \lim_{t \to \infty} \frac{1}{t} \log \left\langle \left(\frac{\ell}{\ell_0} \right)^p \right\rangle$$

or
$$\langle e^{ph} \rangle = e^{tF(p)}$$
, as $t \to \infty$

F(p) is the CGF.

$$\gamma_{\text{Lpv}} = \lim_{p \to 0} \frac{F'(p)}{p}$$



F(p) is convex, and

$$F(0) = 0 \,, \quad F'(0) > 0 \,, \quad F(-d) = 0 \,, \quad \text{and} \quad F(p) = F(-2-p)$$

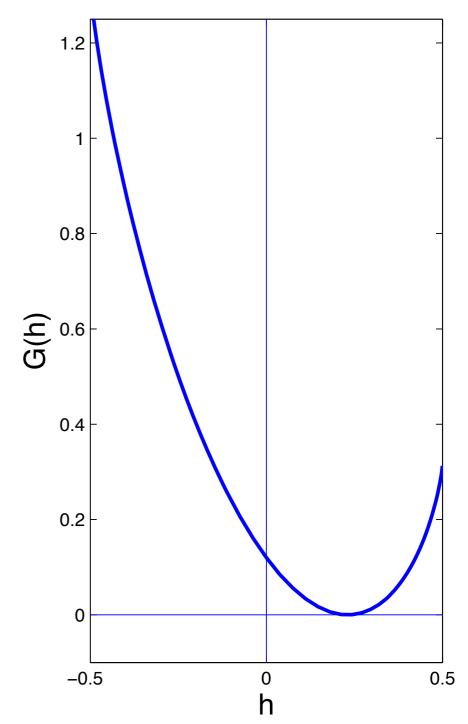
$$F(p) = F(-2-p)$$

The other half of the big picture

Large deviation theory gives

$$pdf(h) \approx \sqrt{\frac{tG''(h)}{2\pi}}e^{-tG(h)}$$

and
$$G(\gamma_{\mathrm{Lpv}}) = 0$$



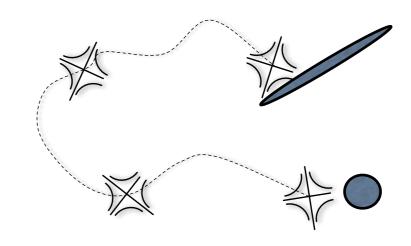
F(p) and G(h) contain equivalent information:

$$G(h) = \sup_{\forall p} (ph - F(p)) \qquad F(p) = \sup_{\forall h} (ph - G(h))$$

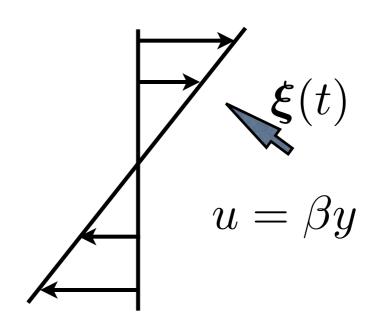
An example illustrating the main features of the big picture

Renewing Couette flow

The illustration at right is misleading: hyperbolic points are not necessary for exponential stretching.

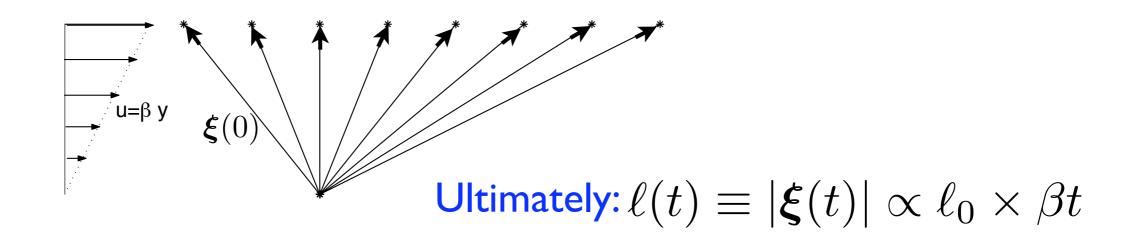


Even Couette flow can produce exponential stretching, provided there is "random realignment". (Think of our renewing wave models.)



Couette flow
$$\dot{\boldsymbol{\xi}} = \begin{pmatrix} 0 & \beta \\ 0 & 0 \end{pmatrix} \boldsymbol{\xi}$$

Recall elementary Couette flow - a material line moves like this:



The solution of the line-element equation is:

$$\boldsymbol{\xi}(t) = \ell_0 \begin{pmatrix} \cos \theta + \beta t \sin \theta \\ \sin \theta \end{pmatrix}$$

and
$$\ell^2(t) = \left[1 + \beta t \sin 2\theta + \beta^2 t^2 \sin^2 \theta\right] \ell_0^2$$

Renewing Couette flow

At the end of each epoch,

$$[0 \le t < \tau] \quad [\tau \le t < 2\tau] \quad [2\tau \le t < 3\tau]$$

randomly rotate the direction of the Couette flow.

At the end of the n'th epoch,
$$\ell(n\tau) = \prod_{k=1}^n \underbrace{\sqrt{1+\beta\tau\sin2\theta_k+\beta^2\tau^2\sin^2\theta_k}}_{\equiv m(\theta_k)} \ell_0$$

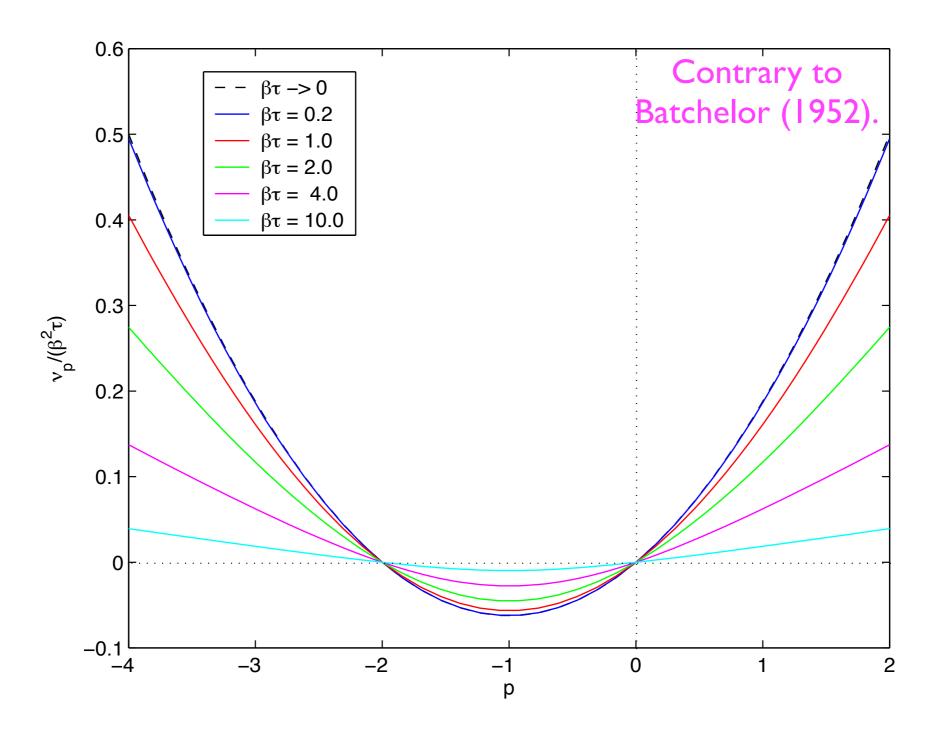
ho Since this is a random product: $\ell_{
m mp}={
m e}^{\langle\ln\ell\rangle}={
m e}^{n\langle m(\theta)
angle}={
m e}^{t\gamma_{
m Lpv}}$

$$\gamma_{\rm Lpv} = \frac{1}{2\tau} \oint \ln\left(1 + \beta\tau \sin 2\theta + \beta^2\tau^2 \sin^2\theta\right) \frac{d\theta}{2\pi}$$

or
$$\gamma_{\mathrm{Lpv}} = \frac{1}{2\tau} \ln \left(1 + \frac{\beta^2 \tau^2}{4} \right)$$

Homework: the renewing sinusoid

The CGF of Renewing Couette flow



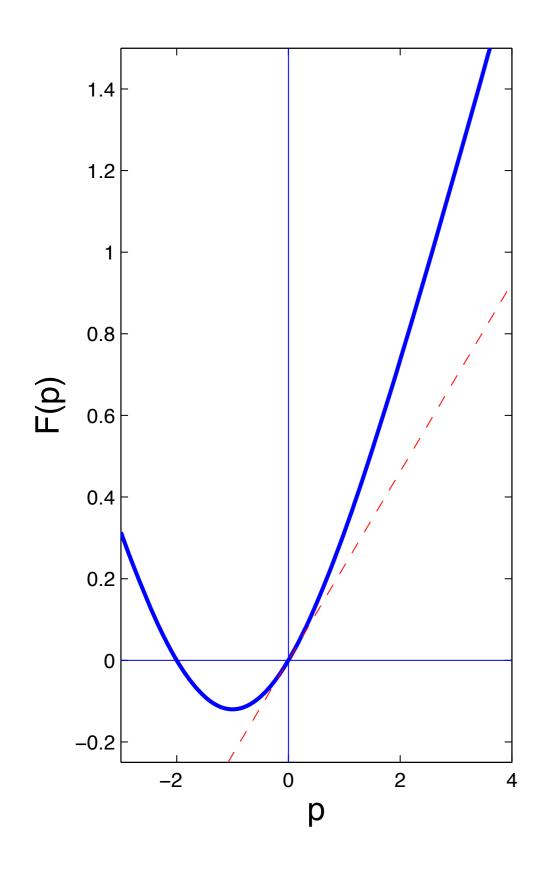
$$F(p) = \frac{1}{\tau} \ln \left[\oint (1 + \beta \tau \sin 2\theta + \beta^2 \tau^2 \sin^2 \theta)^{p/2} \frac{d\theta}{2\pi} \right]$$

(Legendre functions)

Properties of F(p): some "proofs"

$$F(p) \equiv \lim_{t \to \infty} \frac{1}{t} \log \left\langle \left(\frac{\ell}{\ell_0} \right)^p \right\rangle$$

F(p) is convex



$$F(p) \equiv \lim_{t \to \infty} \frac{1}{t} \log \left\langle \left(\frac{\ell}{\ell_0} \right)^p \right\rangle$$

- Use Cauchy-Schwarz:

$$\left\langle \ell^{\frac{1}{2}(p+q)} \right\rangle < \left(\left\langle \ell^{p} \right\rangle \left\langle \ell^{q} \right\rangle \right)^{\frac{1}{2}}$$

$$\Rightarrow F\left(\frac{p+q}{2} \right) < \frac{1}{2} \left(F\left(p \right) + F\left(q \right) \right)$$

In isotropic flow $\gamma_{Lpv} = F'(0) > 0$

Since the line-stretching equation is linear:

$$\xi(t) = \boldsymbol{J}(t)\boldsymbol{\xi}(0) \quad \Rightarrow \quad \ln\left(\frac{\ell}{\ell_0}\right) = \frac{1}{2}\ln\left(\boldsymbol{e}^\intercal\boldsymbol{J}^\intercal\boldsymbol{J}\boldsymbol{e}\right) \,, \qquad |\boldsymbol{e}|^2 = 1$$
 and $\det \boldsymbol{J} = 1$ where $\boldsymbol{\xi}(0) = \ell_0\boldsymbol{e}$

- Three things we know about: $J^\intercal J$
- Use Jensen's inequality log(avg) > avg(log):

$$\langle \ln\left(\frac{\ell}{\ell_0}\right) \rangle_{\boldsymbol{e}} = \frac{1}{4\pi} \int_{|\boldsymbol{e}|=1}^{\frac{1}{2}} \ln\left(\lambda_1 e_1^2 + \lambda_2 e_2^2 + \lambda_3 e_3^2\right) dS$$

$$\geq \frac{1}{4\pi} \int_{|\boldsymbol{e}|=1}^{\frac{1}{2}} \left(e_1^2 \ln \lambda_1 + e_2^2 \ln \lambda_2 + e_3^3 \ln \lambda_3\right) dS$$

$$= \frac{1}{6} \ln(\lambda_1 \lambda_2 \lambda_3) = 0$$

In isotropic flow $\gamma_{Lpv} = F'(0) > 0$

Since the line-stretching equation is linear:

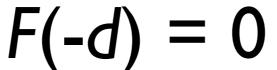
$$\boldsymbol{\xi}(t) = \boldsymbol{J}(t)\boldsymbol{\xi}(0) \quad \Rightarrow \quad \ln\left(\frac{\ell}{\ell_0}\right) = \frac{1}{2}\ln\left(\boldsymbol{e}^{\intercal}\boldsymbol{J}^{\intercal}\boldsymbol{J}\boldsymbol{e}\right) \,, \qquad |\boldsymbol{e}|^2 = 1$$
 where $\boldsymbol{\xi}(0) = \ell_0\boldsymbol{e}$

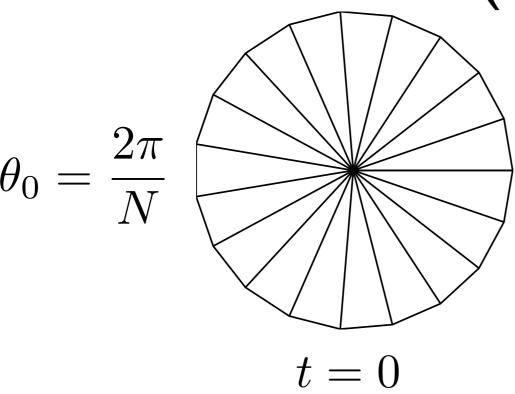
- Three things we know about: $J^{T}J$ symmetric, det = 1, and eigenvalues are positive.
- Use Jensen's inequality log(avg) > avg(log):

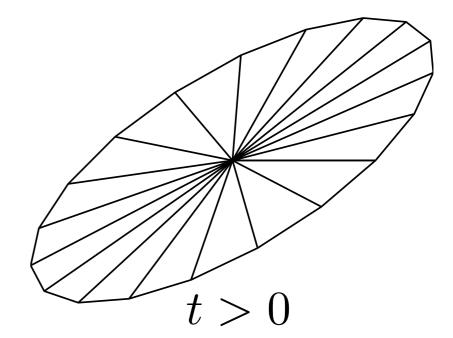
$$\langle \ln\left(\frac{\ell}{\ell_0}\right) \rangle_{\boldsymbol{e}} = \frac{1}{4\pi} \int_{|\boldsymbol{e}|=1}^{\frac{1}{2}} \ln\left(\lambda_1 e_1^2 + \lambda_2 e_2^2 + \lambda_3 e_3^2\right) dS$$

$$\geq \frac{1}{4\pi} \int_{|\boldsymbol{e}|=1}^{\frac{1}{2}} \left(e_1^2 \ln \lambda_1 + e_2^2 \ln \lambda_2 + e_3^3 \ln \lambda_3\right) dS$$

$$= \frac{1}{6} \ln(\lambda_1 \lambda_2 \lambda_3) = 0$$







$$A = \ell_0^2 \theta_0 = \ell_n^2(t) \theta_n(t)$$
 $n = 1, 2, \dots N$

$$\Rightarrow \frac{1}{N} \sum_{n=1}^{N} \left(\frac{\ell_0}{\ell_n(t)} \right)^2 = 1$$

The Kraichnan-Kazantsev model

J. Fluid Mech. (1974), vol. 64, part 4, pp. 737-762 Printed in Great Britain 737

Convection of a passive scalar by a quasi-uniform random straining field

By ROBERT H. KRAICHNAN

Dublin, New Hampshire 03444

J. Fluid Mech. (1974), vol. 64, part 4, pp. 737-762 Printed in Great Britain 737

Convection of a passive scalar by a quasi-uniform random straining field

By ROBERT H. KRAICHNAN

Dublin, New Hampshire 03444

K² flows

Once again, we use a renewal model:

$$[0 \le t < \tau] \quad [\tau \le t < 2\tau] \quad [2\tau \le t < 3\tau] \quad \text{etc}$$

- But now: au o 0, with $oldsymbol{u}_i \propto au^{-1/2}$
- Thus $\langle u_i(m{x}_1,t_1)u_j(m{x}_2,t_2)
 angle = 2\,\mathcal{U}_{ij}(m{x}_2-m{x}_1)\delta_{ au}(t_2-t_1)$
- ightharpoonup Although the kinetic energy of a K^2-flow is infinite, we are not deterred.

Homework/discussion: calculate the velocity correlation function for our favorite example, the renewing sinusoid.

The simplest example: Eddy diffusivity

Start with: $c_t + u_i c_{,i} = \kappa \nabla^2 c$,

We only have to consider the first epoch:

$$c(\boldsymbol{x},\tau) = c(\boldsymbol{x},0) - \underbrace{\tau u_i c_{,i}(\boldsymbol{x},0)}_{O(\tau^{1/2})} + \underbrace{\frac{1}{2}}_{O(\tau)} \underbrace{\tau^2 u_j \left[u_i c_{,i}(\boldsymbol{x},0)\right]_{,j}}_{O(\tau)} + \underbrace{O\left(\tau^3 u^3\right)}_{O(\tau^{3/2})}.$$

$$\frac{\Delta c}{\tau} = -u_i c_{,i}(\boldsymbol{x},0) + \frac{1}{2}\tau u_j u_{i,j} c_{,i}(\boldsymbol{x},0) + \frac{1}{2}\tau u_j u_i c_{,ij}(\boldsymbol{x},0).$$

Ensemble average, and take the limit: $\langle c \rangle_t = \kappa \nabla^2 \langle c \rangle + \mathcal{U}_{ij}(0) \langle c \rangle_{,ij}$. (Assuming spatial homogeneity.)

Recall $\langle u_i(\boldsymbol{x}_1,t_1)u_j(\boldsymbol{x}_2,t_2) \rangle = 2\,\mathcal{U}_{ij}(\boldsymbol{x}_2-\boldsymbol{x}_1)\delta_{\tau}(t_2-t_1)$

The second simplest example: line element FP eqn.

- The line-element equation: $\partial_t \xi_i = W_{ip} \xi_p$
- ightharpoonupZero mean $\langle W_{ip}
 angle = 0$, and spatially homogeneous $\langle W_{ip} W_{qi}
 angle = 0$
- The Liouville equation:

$$\partial_t \tilde{P} + \left(W_{ip} \xi_p \tilde{P}\right)_{,i} = 0 \,,$$
 unaveraged density of line elements

Advance through the first epoch:
$$\frac{\tilde{P}(\boldsymbol{\xi},\tau) - \tilde{P}(\boldsymbol{\xi},0)}{\tau} = \underbrace{\partial_t \tilde{P}(\boldsymbol{\xi},0)}_{O(\tau^{-1/2})} + \frac{1}{2} \underbrace{\tau \partial_t^2 \tilde{P}(\boldsymbol{\xi},0)}_{O(\tau^0)} + O(\tau^{1/2})$$

• Ensemble average: $\partial_t P = \Gamma_{ijpq} \xi_p \xi_q P_{,ij}$ where $\Gamma_{ijpq} \equiv \frac{1}{2} au \langle W_{ip} W_{jq}
angle$

The isotropic case

With isotropic statistics:

$$\Gamma_{ijpq} = \Gamma\left[(d+1)\delta_{ij}\delta_{pq} - \delta_{iq}\delta_{jp} - \delta_{ip}\delta_{jq}\right]$$
 and the solution is isotropic

$$P(\boldsymbol{\xi}) \propto P(\ell)$$
 with $\ell \equiv |\boldsymbol{\xi}|$

After some algebra:
$$\left|P_t + \gamma P_q = rac{\gamma}{d} P_{qq}
ight|$$

where
$$\gamma \equiv d(d-1)\Gamma = \Gamma_{ijij}$$
 and $q \equiv \ln \frac{\ell}{\ell_0}$

We don't need large deviation theory, because everything is Gaussian

There is an equivalent SDE: $\ell = s(t)\ell$,

$$\dot{\ell} = s(t)\ell$$

with
$$s(t) = \gamma + s'(t)$$
, $\langle s'(t_1)s'(t_2)\rangle = \frac{2\gamma}{d}\delta(t_2 - t_1)$.

Decay of Kraichnan's bloblet

The model:
$$c_t + \left[\gamma + s'(t)\right]xc_x - \left[\gamma + s'(t)\right]yc_y = \kappa \nabla^2 c$$
 where $\langle s'(t_1)s'(t_2)\rangle = \gamma \delta(t_1-t_2)$ in $d=2$

How fast does the blob decay, on average?

The solution:
$$c = \frac{\alpha(t)\beta(t)}{2\pi} \exp\left[-\frac{1}{2}\alpha^2(t)x^2 - \frac{1}{2}\beta^2(t)y^2\right]$$

and
$$\dot{\alpha}=-(\gamma+s')\alpha-\kappa\alpha^3\,,$$

$$\dot{\beta}=(\gamma+s')\beta-\kappa\beta^3\,.$$

•• We'd like to calculate: $\left\langle \iint c^{n+1}(x,y,t) \, \mathrm{d}x \mathrm{d}y \right\rangle \propto \left\langle \alpha^n \beta^n \right\rangle$

Solution of the bloblet model

The noise is now additive:

$$\dot{p} = \gamma (1 + e^{-2p}) + s',$$

 $\dot{q} = -\gamma (1 - e^{-2q}) - s'.$

The corresponding FP equation is:

$$F_{t'} + \left[(1 + e^{-2p})F \right]_p - \left[(1 - e^{-2q})F \right]_q = \frac{1}{2} \left(F_{pp} - 2F_{pq} + F_{qq} \right)$$
 with $t' = \gamma t$

Resort to an approximate solution: $F(p,q,t) \approx P(p,t)Q(q,t)$

The marginal densities

For the expanding axis: $P_{t'} + \left[\left(1 + \mathrm{e}^{-2p} \right) P \right]_p = \frac{1}{2} P_{pp}$

or
$$P(p, t') \approx \frac{\mathcal{N}}{\sqrt{2\pi t'}} \exp\left(-\frac{(p - t')^2}{2t'}\right) H(p)$$

For the shrinking axis: $Q_{t'} - \left[\left(1 - \mathrm{e}^{-2q} \right) Q \right]_q = \frac{1}{2} Q_{qq}$

and therefore
$$Q_{\rm eq}(q)=2\exp\left(-2q-{\rm e}^{-2q}\right)$$
 ,
$$=\frac{{\rm d}}{{\rm d}q}\exp\left(-{\rm e}^{-2q}\right)\,.$$

The approximate solution is: $F(p,q,t') \approx Q_{eq}(q) \times \frac{\mathcal{N}}{\sqrt{2\pi t'}} \exp\left(-\frac{(p+t')^2}{2t'}\right) H(p)$

Calculate some statistics

- For the shrinking axis: $\ell^{(m+n)/2} \langle \alpha^m \beta^n \rangle = \langle e^{-mp-nq} \rangle$, $\approx \ell^{(m+n)/2} \langle e^{-mp} \rangle \langle e^{-nq} \rangle$
- Note the necessity of H(p) when m is large.
- The easy average is: $\langle e^{-nq} \rangle = 2 \int_{-\infty}^{\infty} \exp\left[-(n+2)q e^{-2q}\right] dq = \Gamma\left(\frac{n+2}{2}\right)$

The tricky average

We have
$$\langle e^{-mp} \rangle = \int_0^\infty e^{-\varphi_m(p,t')} \frac{\mathrm{d}p}{\sqrt{2\pi t'}}$$
,

$$\varphi_m(p, t') \equiv mp + \frac{(p - t')^2}{2t'} = \frac{p^2}{2t'} + (m - 1)p + \frac{t'}{2}$$

The max of the integrand is at: $p_* = \begin{cases} (1-m)t', & \text{if } m < 1, \\ 0, & \text{if } m \ge 1. \end{cases}$

We find:
$$\langle e^{-mp} \rangle = \begin{cases} \exp\left[\left(\frac{1}{2}m^2 - m\right)t'\right], & \text{if } m < 1, \\ \frac{1}{2}e^{-t'/2}, & \text{if } m = 1, \\ (m-1)^{-1}(2\pi t')^{-1/2}\exp\left(-\frac{1}{2}t'\right), & \text{if } m > 1. \end{cases}$$

The answer

The most basic measure of decay is:
$$\left\langle \iint c^2(x,y,t) \, \mathrm{d}x \mathrm{d}y \right\rangle \propto \mathrm{e}^{-\gamma t/2}$$

Fluctuations in the stretching rate shield some ensemble members from the mean stretching. these long-term survivors dominate the ultimate statisitcs