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This chapter reviews recent research on the interaction of magnetic fields
with MHD turbulence, with particular application to the question of the in-
fluence of Lorentz forces on the efficiency of large-scale field generation.

1.1 Scales for Solar Magnetic Fields

The solar magnetic field outside the radiative core exists on a great range
of length and time scales; these embrace all sizes from that of the disc
itself to that of the diffusion length scales of a few km, well below present
observational resolution. While it is the largest scales that force themselves
on our attention, due to the visibility of sunspots and associated coronal
structures, and the coherence of the solar cycle, it is not clear whether these
large-scale fields control, or are controlled by, the small-scale fields that have
much greater total energy. While the cycle is clearly global in nature, the
“magnetic carpet” of small-scale field structures that appear in quiet regions
would seem to be a local manifestation of dynamo action due to turbulent
stretching.

Linear dynamo theory, in particular the “mean-field” or “a-effect” models,
has proved amazingly successful in predicting aspects of the solar cycle such
as the butterfly diagram. In fact some of this ‘success’ has nothing to do
with the physics employed, but derives from the symmetry of the underlying
geometry. As Knobloch (1994) convincingly argues, all manifestations of
oscillatory wavelike processes in a finite domain with reflexional symmetry
will take the form at onset of travelling wave structures with either dipole or
quadrupole symmetry. In this severe view all that remains is to determine
the direction of travel of the wave crests. Furthermore, the physics of the
mechanism is by no means fully understood, even in the kinematic limit
where Lorentz forces are ignored. While the mechanism for production of
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toroidal field by differential rotation is fairly secure, there is difficulty in
obtaining a convincing and detailed explanation of the return of coherent
field to great depths, as is now demanded by ‘interface’ models of the dynamo
(Parker 1993). The favoured thinking at the present time is that the action
of the three-dimensional turbulence acts to pump field down to a level where
it can be acted on by the zonal flow. Even within this paradigm, however,
there is disagreement as to whether the source of the helical flows with
strong vertical component are just turbulent, as in the original Parker (1955)
picture, or whether the process involves magnetic buoyancy and is essentially
nonlinear. (see e.g. Thelen 1997). Large-scale photospheric fields, such as
sunspots and pores, have important dynamics of their own, which is outside
the scope of this paper. But the cyclical nature of the appearance of bipolar
regions and the regularity of their latitudinal distribution indicate that they
are part of of the same large-scale process, and are not the products of
autonomous dynamo action.

Finally, we come to the magnetic carpet, the small-scale fields clearly
shown in recent TRACE observations (Title 2000). These fields are if any-
thing more prominent during times of reduced sunspot activity; they show
little or no cyclical behaviour and are seen well away from active regions.
It seems likely that these fields are caused by local dynamo action. When
trying to understand such dynamo action at very high magnetic Reynolds
numbers (R, = UL/n, where U, L are velocity and length scales and 7 is
the magnetic diffusivity), it is important to escape from the preconceptions
induced by kinematic dynamo studies and the MHD of steady flows. In a
turbulent flow the field lines are stretched at almost all locations, as nearby
trajectories of the flow particles separate exponentially. Thus there is a
strong mechanism for enhancing magnetic energy locally. In the fully devel-
oped state, although there will be some intermittency due to cancellation
caused by folding of the trajectories, the fluid will be permeated with field
to a much greater extent than would appear at the surface. This is because,
at a boundary, areas of surface particles are not conserved. We therefore
expect to find tangled fields with a fractal dimension between 1 and 2, even
in the limit 7 — 0. These fields will exert a significant dynamical influence
on the flow, and so can be expected to be at equipartition levels. Such a
“magnetic fondue” can be glimpsed in the magnetic carpet, but the basic
arguments apply to all scales where the magnetic Reynolds numbers are
large, and where the turnover time (which, rather than the diffusion time, is
the appropriate time for growth of the fields) are not too large. The mech-
anisms at larger scales are likely to be affected by Coriolis forces; however
the magnetic carpet, and numerical simulation, (Cattaneo 1999, Cattaneo



Dynamo processes: the interaction of turbulence and magnetic fields 3

& Hughes 2001)show that large-scale rotation is not necessary for dynamo
action. The problem, therefore, is to understand how the large-scale ob-
served fields can be generated (the “a” part of an a-w dynamo), in these
magnetically dominated flows. The answers are still highly controversial.
This paper reviews recent theoretical ideas and associated numerical work

in an attempt to throw light on the difficulties.

1.2 Field structure in kinematic dynamos at large Ry,

The a-effect, or mean field dynamo, has long been a mainstay of theories of
the solar cycle, and it is still widely used today. The text by Moffatt (1978)
gives an excellent overview of early applications, while more recent references
can be found in Weiss (1994). There are two basic assumptions; that there
is scale separation between ‘mean’ and ‘fluctuating’ fields; and that the
averaged e.m.f. induced by the small-scale fields is a local function of the
mean magnetic field and its derivatives. The first assumption would seem
reasonable, but the second is harder to justify in the interesting case where
the magnetic Reynolds number is very large, even on the smallest scales.
(When the small-scale R,, < 1 then a rigorous theory can be constructed;
see e.g. Moffatt’s book). There are several important consequences of large
R, (Galloway & Proctor 1992, Cattaneo et al 1995):

N

e Field structures are highly intermittent, with length scales ~ R,”.

e These structures do not depend much on the value of R,,, but on the
topology of the flow pattern. Only the thickness of the structures depends
on R,,.

e These small-scale fields can be self sustaining; that is, there is a small-scale
dynamo.

The smallest scales of the field appear very rapidly in kinematic com-
putations at high R,, — in fact after a few turnover times L/U. However
the growth rate of dynamo disturbances does depend on R,,, but typically
appears to reach a limiting value independent of R, as R,, — oo, though
precise computation becomes very difficult owing to to the small length
scales involved. This limiting growth rate is typically of order L/U; these
are known as fast dynamos (see, e.g. Childress & Gilbert 1995). In spite of
the difficulty in resolving the smallest structures, we find that scaling laws
for the eigenfunctions are established accurately at much lower R,, and can
be accurately calculated. Such laws give a power-law distribution for in-
tegrated quantities such as Ry = |(B)|?/(|B|?), which ~ R}, where v is
a constant of order unity depending on the flow, as shown in Figure 1.1.
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Fig. 1.1. Behaviour of the quantity R; defined in the text as a function of R,, for
three different dynamo flows (from Cattaneo et al. 1995). The greater the slope,
the greater the energy in the small-scale fields.

These power laws demonstrate that the field distribution is fractal in na-
ture; and indeed if 7 is not too small then at large R,, the smallest scales
of field are dominant, as is perhaps to be expected. One final aspect of
these kinematic fast dynamos deserves attention. When the dynamo field
exists on essentially the same scale as the velocity field, helicity of the flow
is not necessary for efficient dynamo action. This shows that the fact that
the magnetic carpet fields are on too short a timescale to notice the Sun’s
rotation does not rule out dynamo action as their cause. Such fields will
not work as mean-field dynamos (see below), because for them helicity is
essential. If buoyancy is the principal driving mechanism then helicity can-
not be introduced directly; it follows that for an efficient mean field dynamo
we require either rotation or inhomogeneity (giving gradients of large-scale
helicity).

1.3 Dynamical equilibration of small-scale dynamos

How large can a small-scale dynamo field get before the growth of the field
is halted by the dynamical effects of the Lorentz force? In the solar context,
where the viscosity is small, we expect such effects to occur when the mag-
netic energy density |B|?/2pu0 is comparable with the kinetic energy density
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Fig. 1.2. Finite time Liapunov exponents for a simple quasi-two dimensional dy-
namo (after Cattaneo et al. 1996). Lighter shades indicate greater stretching. (a)
Kinematic case, (b) dynamic case when Lorentz forces have reduced the stretching
properties of the flow.

plu|? (equipartition). This expectation is confirmed by the results of sev-
eral calculations of model dynamos, and by the full MHD simulation of a
convective dynamo by Cattaneo (1999). At high values of R,,, as the field
amplitude grows, we must pass from a growth rate comparable with the
turnover time to one which is zero! How is this accomplished? One mech-
anism, which would hold for spatially constrained flows, would be for the
kinetic energy to be reduced, thus reducing the magnetic Reynolds number
towards the critical value. This is most unlikely to happen when the kine-
matic Ry, is far above critical, since that would demand a huge reduction in
the kinetic energy. Instead, these systems equilibrate in a much more subtle
way, which is almost invisible in the Eulerian statistics. An example is given
for a simplified model by Cattaneo, Hughes & Kim (1996), and examples
of finite-time Liapunov exponents for the kinematic and dynamic cases are
shown in Figure 1.2 They reduce their efficiency as a dynamo by altering
their stretching properties, so that the Liapunov exponents go down, lead-
ing to less efficient energy growth, leaving cancellation effects to mop up
such growth as remains. (It is possible that in some cases the cancellation
is enhanced, rather than the stretching reduced. But the detailed results
produced to date do not show this. Such enhancement is more likely to
be a consequence of two-dimensionalization of the flow induced by a large-
scale field.) How long does it take for equilibration to be achieved? The
growth rates at high R,, are fastest for the smallest scales of motion, so one
could expect that each scale might become dynamically active after a time
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proportional to its turnover time. Magnetic energy reaches equipartition
successively at longer and longer scales. Finally we have “MHD turbulence”
with Lorentz forces important at all scales. The crucial question for the
coherent dynamo involved in the solar cycle is: can fields which have a scale
much greater than that of the turbulent flows grow at a substantial rate?
Thus we need to address the dynamical effect of the Lorentz force on mean
field growth.

1.4 Growth and equilibration of mean fields

In this section we discuss the way in which large-scale (“mean”) fields can
arise as a result of small-scale fluctuating motion. We first note that the
distinction between large and small scales is only clear when the small-scale
turbulence is homogeneous. Any systematic large-scale inhomogeneity will
ineluctably lead to components of the Fourier spectrum of the field on the
same scale. These are of a different nature, however, from the independently
generated fields that form the cycle. The effects of the small-scale on the
large-scale fields may be seen by writing the magnetic field B = B + b and
the velocity field U = U +u; then the induction equation for time derivative
of the mean field B becomes

OB S — — -

E:VX(U><B)+V><8—V><17V><B,where E=uxb. (L1)
In order to get significant mean fields on a relevant (i.e. non-diffusive)
timescale we need the “a-effect” a , defined by the ansatz € = a - B, to
be of order |u|, i.e. independent of 7, the magnetic diffusivity. While «
is straightforward to calculate when the small-scale R, is small (see, e.g.
Moffatt 1978), it is much harder to see how to proceed when the small-
scale R, is large. In the Parker (1955) picture field lines are twisted and
rotated by a helical “cyclonic event”. For events shorter than the turnover
time we can say that £ is proportional to —H, where H is the helicity.
But if such an event persists longer than a turnover time the constant of
proportionality may change sign due to multiple rotations. Thus even the
sign of the effect is not certain, and there are other problems associated
with the possible nonlocal dependence of £ on B. Nonetheless, one can
imagine an experiment in which a wuniform magnetic field By permeates a
region of homogeneous MHD turbulence. There is no large scale dynamo
but £ can be calculated as a function of By. It is crucial to understand
how a depends on By. We expect it to reduce with increasing field (“a-
quenching”), but when do Lorentz forces become important and initiate
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this quenching? There is considerable controversy over this question. To
fix ideas, define Bp, the equipartition field strength, as (ugpm)%. Then
we can all agree that because of the symmetry under sign change of B, we
expect some functional dependence for large R,, of the form

a(B) = F(R;,[B*/BE). (1.2)

The controversy resides in the value of the exponent a. If a < 1 then the
large-scale fields can reach equipartition values with relative ease, while if
a is not small the mean field mechanism shuts down when |B] is still well
below Bpg, making the timescales for the production of large-scale fields
inordinately long.

Before looking at recent simulations which cast light on the value of a, we
first deal with the formula for e in MHD turbulence originally put forward
by Pouquet, Frisch & Léorat (1976) and revisited by Blackman & Field
(2000). We begin with fluctuating magnetic and velocity fields b, u. Then a
uniform field B is added, and this has the effect of changing the fluctuating
fields to b + b’, u + u’, where b’, u’ obey the equations

/
1 —
8{)_1; =-Vp+-—B-Vb
o Hop + small(?) diffusion terms ~ (1.3)
ot

To find the mean e.m.f. proportional to B, we can assume isotropy, so that
a;j = ad;j. Thus we have (the dots denoting time derivatives)

E=aB=uxb +u xb

Te - - 1.4
~ / (u X b4+ u’ x b) dt where 7. is a “correlation time” (14)
0
If 7. is short cf. other timescales then we can use (1.3) to obtain
az—% (u-qu—(ugp)_lb-be> . (1.5)

There are many assumptions made in this derivation, not least the one that
equates correlation times for velocity and magnetic fields. Nonetheless the
expression (1.5) does have the satisfying characteristic that if the “turbu-
lence” takes the form of Alfvén waves, for which u = £b/,/nop, then €
must vanish. Unfortunately the formula has been interpreted by many au-
thors as giving a model of the effects of large imposed fields on «, with u, b
considered as the actual fields. In fact the formula can be justified only for
small |B|, since equations (1.3) can then be linearized; and where the field
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b has nothing to do with B but is preexisting. Nonetheless it is useful as a
guide to the initial growth rate of a large-scale field in the presence of MHD
turbulence. It should be emphasised that the induction equation remains
linear irrespective of the effects of the Lorentz force, and so the last term in
(1.5) can only arise from magnetic fields that do not owe their existence to
the imposed field B. This is not the situation considered by Moffatt (1978)
and others.

Whether or not the above result remains true for large imposed fields,
there remains the crucial question posed above: what is the form of the
function F defined in (1.2), and what in particular is the crucial exponent
a? In general terms we expect that F(X) decreases with X, and ~ X ¥
as X — oo, with § > 1. The existence of large-scale fields of significant
amplitude suggests that a is small, while numerical calculations of idealized
problems suggest that a ~ 1, which must lead to significant problems with
the large-scale fields. In consequence these calculations have been criticized
as inapplicable to real MHD turbulence. Nonetheless there are several theo-
retical reasons for supposing a significant, and the critics have not yet found
a definitive solution to the difficulty.

The theoretical backing for a to be significant is provided by Gruzinov &
Diamond (1994, 1995). They consider a situation in which magnetic and
velocity fields are statistically stationary. This implies that the time deriva-
tive of the mean magnetic helicity a - b vanishes, where a is the magnetic
potential defined by b =V x a, V-a = 0. The equations for a and b are

0 —
8—a:(u><B)+(u><b)—Vx—nV><b
mf. (1.6)
E:Vx(uxﬁ)jl—Vx(uxb)—Vx(anb)
: : : .0 — :
where Y is the electrostatic potential. Setting E(a - b) = 0, we obtain after

some manipulation
B-(uxb)=B-£=-7b-V xb,

and so we have the exact result (not depending on any assumptions con-
cerning small R, or short correlation times)

a=—|B|?7b-V x b. (1.7)

It should be noted here that the field b is now the total small scale field;
there is no approximation involving small |B|. Gruzinov & Diamond use
(1.7) in combination with (1.5) to give a relation between « and |B| of the
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form
a = ag(1+ Rn|BI*/B)~,

where « is the kinematic a-effect that holds when Lorentz forces are negli-
gible. which suggests that a = 1. Although this result is very appealing, it
must be recalled that the definitions of b in (1.5) and (1.7) are not obviously
compatible. Further calculations establish that the part of € proportional
to gradients of B (the ‘turbulent diffusivity’) only depends on |§2|/ Bi.
The physical picture that backs up the theory has been elaborated by
Cattaneo & Hughes (1996), and recently given support by Brandenburg
(2001). The basic idea is simple. The dynamical effects of the magnetic
field on the flow must be felt when the Lorentz forces become significant.
In flows of astrophysical interest, R, > 1 even on the small scales, and in
this case |b| > |B|. In fact when the fields are sufficiently weak the growth
of small-scale field is ljmited by diffusion in regions of flow convergence, and

so we expect |b| ~ Rz |B| if the field is in sheets. When we have flux tube
type structures, the amplification factor is larger but the dynamical effects
smaller. In either case, when the small-scale field reaches the equiparti-
tion value we expect a significant change in the dynamo process. Thus the
physical picture predicts ¢ ~ 1. Although the small-scale field is highly
intermittent the crucial mechanism of dynamo generation occurs precisely
where the small-scale fields are being produced — and so such intermittency
is unlikely to affect the value of a significantly.

These ideas have their origin in simpler studies in two dimensions (e.g.
Vainshtein & Cattaneo 1992) investigating the effects of the Lorentz force on
the diffusion rate of an imposed large scale field. Here there is no dynamo,
but similar considerations suggest that the stretching properties of the flow
are affected, leading to a decrease in the turbulent diffusivity, In that work
it is argued that the conservation of the mean square magnetic potential in
the absence of diffusion, together with the requirement that the turbulent
diffusion have a value independent of 7, requires the small-scale magnetic
field to exist on diffusive length scales. There is a clear analogy in three
dimensions with the conservation of magnetic helicity. This leads via (1.7)
to the requirement of magnetic fields on diffusive scales in order that « not
depend on the diffusivity. It is notable that there is no similar conservation
law for mean square potential in three dimensions, and that the turbulent
diffusivity in this case is affected much less by the imposed field (one can
see that unknotted field lines can slip through highly conducting material
in 3D without affecting the flow much). One would expect the helicity
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constraint to have an effect on this process; the situation remains unclear.
The reduction in the a-effect occurs on this view because the Lorentz forces
prevent the smallest scales of the magnetic field from reaching diffusion
levels. In addition, when the magnetic Prandtl number is of order unity, as
may be appropriate for the Sun, the MHD turbulence spectrum may contain
a significant proportion of Alfvén waves, for which u and b are parallel and
which thus give no contribution to £. When the magnetic Prandtl number
is very large, as may be the case in galaxies, then of course there are no
Alfvén waves and the equilibration mechanism is different, perhaps leading
to smaller values of a, as shown in recent work by Schekochihin, Cowley,
Maron & Malyshkin (2002).

The idea that a is significant is given support from three very different
numerical studies. The first (Brandenburg 2001) considers flow in a periodic
domain, forced by a helical body force on a small scale. There is eventual
growth of significant large-scale fields, which are force-free and can grow to
large size free of dynamical constraints. While increasing Ry, leads to more
rapid initial growth, the time taken for final equilibration also increases. The
a-effect is calculated by solving a short-time initial value problem, and by
superposing a uniform mean field and calculating € directly. Both methods
(see Figure 1.3) yield a significant dependence on R,, in the a-quenching
formula, with a > 1. Brandenburg also finds that the turbulent diffusivity
is quenched, but that the dependence on R,, is rather weaker, as suggested
above. The remaining studies were carried out by Cattaneo & Hughes (1996)
and Cattaneo, Hughes & Thelen (2002). In the first, a kinematic flow is
forced that has the form of the so-called CP-flow of Galloway & Proctor
(1992). A fully three-dimensional calculation is undertaken, starting from
this velocity field with an imposed uniform field in the z-direction.. Only
that part of the a-effect which derives from fully three-dimensional, that
is nonlinearly driven, flows is evaluated by direct calculation of € and the
results show that a ~ 1 for the quenching properties. The magnitude of the
turbulent fluctuations, however, scarcely changes with the imposed field.
This last result was predicted previously by Cattaneo & Hughes (1996).
In the paper of Cattaneo et al. the CP flow is again employed, but now
solutions are sought in a long periodic box in the z-direction (the original
flow being independent of z). The length of the box is chosen as 8 times
the period of the most rapidly growing mode; the latter then plays the role
of fluctuating field, while the mode with the same period as the box plays
the role of the large-scale field. Two different case are considered. In one
the initial condition has comparable energy in the small and large scales,
while in the other the large-scale energy is initially much greater. The final
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Fig. 1.3. Graphs of various runs from the paper of Brandenburg (2001), showing
the reduction of o with increasing B. The first figure shows the result of solving a
short-time initial value problem, and the second the value calculated from imposing
a uniform field. The results are very similar. The lower curves correspond to greater
values of R,,.

state appears to depend on these initial conditions. In the first case the
nonlinear interactions between different wavenumbers force rapid growth of
the large-scale field, although its natural growth rate is much less than that
of the small-scale field, but growth stops when the large-scale field has much



12

=1 —
=3
=6
>, =8 |
et} =12
<
()
e}
= |
O
3
(O] _
c
oY)
©
c |
"{ time
1071 ‘
101
109 T e ]
% 10 LE .
)
S 10 R .
O
e —37 |
3 10
T o0 4 K=0
=~ L _
10 K=0
_ - K=7
10 S K=9 N
L
0 50 100 150 200 250 300

time

Fig. 1.4. Graphs of runs from the paper of Cattaneo et al. (2002). The different
lines refer to modes of different wavenumber. The initial energy of the largest scale
(K = 1) and the most unstable modes (K = 8) are comparable. Growth of the
K =1 mode is accelerated above its kinematic rate between times ¢t; and t».

lower energy than the short lengthscale mode. There seems to be a further
adjustment on a much longer timescale. In the second case the large scale
quickly equilibrates, leaving the other scales at lower values. Results are
shown in Figures 1.4, 1.5. It turns out that the evolution of the large scale
field can be discussed in terms of an a-effect. This is verified by looking at
similar short box calculations and evaluating the a-effect as in the earlier
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Fig. 1.5. As for the previous figure except that the energy in the largest scale is
initially much greater than that in the other scales. The magnetic field becomes
dynamically active at time ¢4, and nonlinear saturation occurs at time ¢;.

paper described above. The two methods give very similar results, justifying
the interpretation. It is again found that the process of a-quenching depends
strongly on R,,, as indeed does the initial value of « for weak imposed fields.
(see Figure 1.6). From the results (Figure 1.7) we can see that « falls to
diffusive values while the mean fields are well below equipartition values.
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Fig. 1.6. The behaviour of the a coefficient for fixed B as a function of R,,, in the
calculation of Cattaneo et al. with comparable initial large and small-scale field. It
can be seen that there is a strong reduction as R,, increases.
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Fig. 1.7. The behaviour of the a coefficient (y-axis) for R,, = 100 as a function of
=2 SN . .
B (z-axis), in the same calculation as for the previous figure. It can be seen that
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there is a strong reduction in o when R,,,B" is of order unity.

The conclusion of these studies, that «-quenching is very strong at large
values of R,,, of course makes it difficult to see how large-scale fields could
arise on other than irrelevant diffusive timescales. A possible chink in the
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reasoning has been identified by Blackman & Field (2000), who argue that
the results depend strongly on the constraint that small-scale helicity (and
not just total helicity) is conserved. Such conservation is natural in model
experiments with periodic boundary conditions, but it may be that with
more realistic boundary conditions the separate conservation of small-scale
and large-scale magnetic helicity will be destroyed, allowing a decrease of
small-scale helicity, which may affect the quenching process. Calculations
so far have been inconclusive. Indeed Brandenburg & Dobler (2001), who
carried out model calculations with forced helical flows with non-periodic
boundary conditions, reported that the crucial value of a was still > 1/2,
with peak fields actually reduced over the periodic case. The results were
somewhat model dependent, however, in that while an imposed vertical
field boundary condition lowered the mean field over the periodic case, the
use of a “potential field” condition could actually increase it. However in
the latter case the time taken to reach these larger values increased with
R,,. In my view calculations with more realistic boundary conditions are
worth pursuing further; nonetheless there are powerful local arguments, not
dependent on any conservation law, which support the idea that the dynamo
properties of a turbulent flow (which depend very subtly on its Lagrangian
structure) are going to be strongly affected when the Lorentz forces become
significant on the smallest scales.

1.5 Conclusion

In this short review I have tried to put forward the current state of play
regarding the important question of the effects on and by large scale fields
of small-scale MHD turbulence. The difficulty in the past has been the
misleading prejudices induced by the study of models with small R,, on the
smallest scales. Not only do these give a wrong picture of the nature of the
a-effect, but they fail to take into account the fact that at large R,,, the small-
scale flow is likely to be a dynamo in its own right, with effects on dynamo
generation for mean fields that are only now becoming apparent. There
are many questions that need to be answered before a satisfactory theory
can emerge that will account for the observed large-scale solar fields. An
important aspect that has yet to receive full attention is the inhomogeneity
of the process. This will inevitably lead to large scale fields on dynamic
timescales, as foreshadowed by the calculations of Cattaneo et al. (2002).
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