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Effects of fluctuation on mean-field α − Ω dynamos
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We analyse the role of a fluctuating α-effect in α − Ω dynamo models. Numerical
experiments show that if the alpha-effect is calculated from direct simulation of the
governing MHD equations there are typically large fluctuations compared to the mean,
even if the mean is zero. Earlier work has suggested that these fluctuations alone, in
concert with the Omega-effect (differential rotation) can lead to dynamo action. Much
of this other work has concentrated on reduced versions of the governing equations, but
did not address various questions such as the effect of the new mechanism on the speed of
dynamo waves and cycle times for models in realistic geometries. Previous developments
involving the spatial distribution of the fluctuations were also unnecessarily cumbersome.

By means of a simple ansatz we show that there can be a mechanism for magnetic
field generation, valid at large scale separation, deriving from the interaction between
a mean shear and a fluctuating α-effect. An equivalent term can arise from the ’shear
current effect’. The resulting equations, including the new term representing the mean
effect of the fluctuations, are investigated in planar and spherical geometries. We show
that the new effect can act as a dynamo even in the absence of a mean alpha-effect, and
that the time-scale for dynamo waves is strongly affected by the presence of fluctuations,
with the largest values of the fluctuations leading to steady dynamo action.

Introduction The mean field dynamo ansatz has been used for many years
to produce tractable models of the solar dynamo. The outcome of the theory is
a mean emf E = α :B, where B is the mean magnetic field, and α is a pseudo
tensor, which changes sign under reflection. The effect is commonly modelled as
arising due to the helicity in small-scale turbulence, and in any case is not present
when the turbulence has reflection-symmetric statistics. When incorporated into
the induction equation for the mean field, the resulting new term (if well-defined)
is guaranteed to lead to dynamo action on large enough length and time scales as
it has fewer derivatives than the diffusive term. There are other more complicated
mean field effects but these are not guaranteed to lead to dynamo action as the
new term has the same number of derivatives as the diffusive term.

However it is very difficult to fit numerical calculations into the α-effect (mean
field) formalism. When the magnetic Reynolds number on the small scale is large,
as in astrophysical applications, we find that there are large fluctuations in the
emf - even for non-helical flows. Recent calculations highlight the difficulties.
Simulations of convection in a plane layer of Boussinesq fluid, rotating about a
vertical axis, as in [4], might be expected to yield a large mean emf according to
conventional ideas. But the mean emf in the top half of the layer is tiny compared
to the rms value, as seen in Figure 1. Thus it makes sense to investigate whether
fluctuations in the mean emf can act to promote dynamo action. Early work by
[6] (see also [7], Ch. 7), considered an α2 dynamo, with no mean flow, in which the
α-effect exhibited fluctuations with zero mean, but the results were inconclusive.
[13] showed that fluctuations of α in a simple α − Ω dynamo model can lead to
dynamo action, but did not attempt a systematic survey. An approach close to



that of the present paper was adopted by [12]. After very lengthy and detailed
analysis it was concluded that the effect of fluctuations was a term of α-effect type,
derived from spatial variations of the fluctuations. However there is another effect
(sometimes called the ’incoherent dynamo’ as in [13]), which does not depend on
such inhomogeneity. It may or may not act to enhance dynamo action, depending
on the space-time spectrum of the fluctuations in the α-effect. A recent paper ([5])
indicates that, using first order smoothing, the new term enhances dynamo action
only in special cases, but the general situation is unknown. A recent paper [1]
demonstrates the existence of the effect in a numerical simulation. When it does
enhance the dynamo process, it has an important effect upon the temporal period
of the solutions in a finite geometry. In what follows we present a derivation of
the new mean term, following [8] and [10], and give preliminary results concerning
finite geometries, following [10], [3].

1. Derivation of model equations We start with a one-dimensional
dynamo wave model, originally proposed by Parker and adapted by ([9]); let
B = B(x, t)ey + ∇ × [A(x, t)ey] in a Cartesian geometry, where y represents
the azimuthal direction, and x the North-South direction. We first assume that
the domain has infinite extent in x. The governing equations can be written

At = αB + η
(

Axx − ℓ2A
)

(1)

Bt = Ω′Ax + η
(

Bxx − ℓ2B
)

(2)

where η is the magnetic diffusivity, ℓ is an inverse lengthscale, and the subscripts x
and t denote differentiation with respect to x and t, respectively. The Ω′Ax term
represents the effect of large-scale shear, producing toroidal from poloidal field.

We let α be a sum of its mean and fluctuating parts, where the fluctuations
vary on scales slower than the averaging process defined in the derivation of mean-
field theory, but faster than the time and space scales for mean field evolution. To
enforce the fact that the fluctuations are large, we introduce a small parameter ε
so that

α = α0 + ε−1α1 (τ, ξ)

where the subscripts 0 and 1 represent the mean and fluctuating parts respec-
tively, τ is the intermediate timescale, and ξ is the intermediate spatial scale. (We
suppress any dependence on the global lengthscales x, t). To obtain the correct

scalings, we set ∂t → ∂t + ε−1∂τ , ∂x → ∂x + ε−
1

2 ∂ξ. These fluctuations induce
corrections to A and B and we write A → A0 + A1(τ, ξ), B → B0 + εB1(τ, ξ).
Substituting into 1,2) we obtain at leading order in ε

A1τ = α1B0 + ηA1ξξ
(3)

B1τ = Ω′(A1x
+ ε−

1

2 A1ξ) + ηB1ξξ
(4)

Though the underlined term appears to violate the scaling it can be shown that
its net effect on the emf (after averaging over the short scale) is to produce an
order unity contribution to the α-effect term. Similarly, any effect of the spatial
variation of α1 on the global scale x will also lead to a modification of the α-effect,
as noted by [12] and so we also ignore such variations.

The equations (3,4) are solved by Fourier transforming in ξ and τ , denoting
the transform of α1 by α̃(k, ω), and similarly for the other variables. Then we find
(ignoring the underlined term and any x dependence of α1)

Ã =
α̃B0

iω + ηk2
, B̃ =

Ω′B0xÃ

iω + ηk2
=

Ω′B0xα̃

(iω + ηk2)2
(5)
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Finally, taking the average of (1) over the short length and time scales, and denot-
ing this average by 〈·〉, we obtain a new term of the form 〈α1B1〉, and the poloidal
equation becomes

A0t = α0B0−GΩ′B0x+η
(

Axx − ℓ2A
)

, where G =

〈 |α̂(k, ω)|2(ω2 − η2k4)

(ω2 + η2k4)2

〉

(6)

In the equation for G the averages are now taken over Fourier space. The new
term in G can plainly take either sign, depending on the spectrum of α1. Dynamo
action is only enhanced when G > 0. This term is the same in form as can
arise from off-diagonal terms in the turbulent diffusivity, otherwise known as the
shear-current effect [11].

We can also apply very similar analysis to mean-field dynamos in a spherical
geometry (see [8] for more details). Consider an axisymmetric mean field B =
B(r, θ)eφ+Bp (where Bp ≡ ∇×[A(r, θ)eφ]) in spherical polar coordinates (r, θ, φ).
The only mean flow is that of zonal shear with differential rotation Ω(r, θ). There
is an α-effect proportional to B, of the form α(r, θ, t)B. The induction equation
then takes the form for an αΩ dynamo,

∂A

∂t
= αB + ηD2A, (7)

∂B

∂t
= r sin θBp · ∇Ω + ηD2B, (8)

where D2 = ∇2 − 1/r2 sin2 θ. Applying exactly analogous methods as for the
Cartesian case, we obtain a modified set of equations with (8) unchanged, and (7)
replaced by (dropping the suffix 0):

∂A

∂t
= αB + 〈α1B1〉 + ηD2A, where (9)

〈α1B1〉 = −(G∇(r sin θB0) × eφ +
1

2
∇G × r sin θB0eφ) · ∇Ω (10)

2. Marginal Dynamo Waves In an infinite domain, equations (6,2) can
now be solved to find marginal solutions of the form A, B ∝ exp i(kx+ωt) [8],[10].
Substituting this ansatz into equations (6,2) yields the dispersion relation

(

iω + η(k2 + ℓ2)
)2

= GΩ′2k2 + iΩ′α0k. (11)

The imaginary part is ω = Ω′α0k/2η(k2 + ℓ2) (so that the dynamo waves travel if
Ω′α0 6= 0), while the real part can be written in dimensionless form. If we write
k = ℓm, and define

D =
Ω′α0

η2ℓ3
, Q =

GΩ′2

η2ℓ2
, (12)

then ω = ηℓ2Dm/2(1 + m2) and D, Q and m are related by

Qm2 + D2
m2

4(1 + m2)2
= (1 + m2)2. (13)

The envelope of this family gives the marginal stability boundary; we can show
that this is given parametrically by D2 = 2m−4(1+m2)4(1−m2), Q = 1

2
m−4(1+

m2)2(3m2 − 1). When Q = 0 we have the usual αΩ dynamo. Dynamo action is
possible when |D| ≥ 32/3

√
3, with equality when m = 1/

√
3. Even when D = 0,

we can find dynamo action when Q ≥ 4, with equality when m = 1. Although
in this case ω = 0 so that the wave does not travel, the example shows that the
fluctuations in α alone can lead to growing magnetic fields, even when there is no
mean emf. The stability boundary is shown in Figure 2.
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3. Numerical results for waves in a finite domain In order to un-
derstand how a finite geometry will affect the time dependence of non-linear so-
lutions, consider a simple one-dimensional model. This is related to the Parker
model above, but now we take our x-domain to be 0 < x < l, so that x = l/2 rep-
resents the ’equator’. We take α to be antisymmetric about the equator, while we
take the new term (which on physical grounds should be even about the equator)
to be uniform. A and B obey zero boundary conditions at x = 0, l, and we set
Ω′ = ℓ = η = 1. Nonlinear effects are represented by a simple quenching term.
Our equations then take the form (with r, d positive constants)

∂A

∂t
= −rBx + d sin(2πx/l)B

1 + B2
+ Axx − A, (14)

∂B

∂t
= Ax + Bxx − B. (15)

It was shown in [8] that for large enough r, solutions for any d become steady in
this geometry. A careful numerical investigation by [10] for solutions with dipole
parity (with A even and B odd about x = l/2) gives the regions of r, d space where
steady and oscillatory solutions are stable (no aperiodic solutions were found for
the particular value l = 10). The results are shown in Figure 3.

It is interesting that dipolar solutions are not always selected. In fact depend-
ing on the parameters either dipole, quadrupole or mixed mode solutions may be
stable. Here we show some preliminary results: more details are given in [10]. In
Figure 4 are shown the regions of r, d space where different types of solution may
be found for l = 10, and blow-up of the regions marked (a), (b) in the left panel.
Further work is needed to pin down the very complex boundaries between different
behaviours, and to investigate the dependence on l.

4. Numerical simulations in spherical geometry Finally we give
some results from fully nonlinear mean-field dynamo simulations in a spherical
shell. The model used is that developed by Bushby [2] (in which full details may
be found) and features a fully resolved axisymmetric dynamo calculation, with
a prescribed differential rotation mimicking flow in the tachocline. The model is
augmented by the addition of the new term given by equation (10), and there
is a simple quenching term on the lines of the nonlinearity in (14), rather than a
dynamical interaction with the shear as used in [2]. Here we give some preliminary
results from the model; full details will be given in [3]. Two sets of plots are given
here: in the first set the fluctuation term, G, is taken to be proportional to the
magnitude of α2

0 (so that the ratio of the mean α to the rms α is uniform). In
Figure 5 are shown greyscale plots of the toroidal field as a function of latitude
and time at the base of the convection zone, for various values of the fluctua-
tion amplitude. The results resemble those for the one-dimensional model given
above: the period lengthens and if the fluctuations are sufficiently large a steady
dynamo results. In Figure 6 are shown runs for fluctuations that are proportional
to the magnetic diffusivity η (which in the model falls off rapidly at the base of
the convection zone) but independent of the size of α0, Now as the amplitude is
increased we first see variations in the butterfly diagram that are predominantly
restricted to high latitudes (where α0 is small but the shear dΩ/dr is large). In the
0.002 case, there are clear longer period oscillations at high latitudes, and there
is a small increase in period at low latitudes. The steady mode appears abruptly
in this case, due to the long-period high latitude oscillations becoming dominant
when the fluctuation parameter reaches 0.003. Further runs are clearly needed to
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determine more carefully the reason for these two different approaches to steady
dynamo action.

5. Conclusions In this paper we have shown how incorporating the effects
of fluctuations of the α-effect in the presence of shear can lead to a new type of
mean field term that can act to promote dynamo action. This term can also arise
as a consequence of the shear-current effect [11]. We also present calculations for
three different models to show the effect of the new term. A principal conclusion
is that the new effect can have profound consequences for the period of any cyclic
dynamo, and thus that any estimates of cycle periods derived by assuming no
fluctuations in α must be regarded with caution.

Further work is in progress to fully explore the consequences of the new term
in realistic mean field models, and will appear in the forthcoming papers [10],[3].
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Figure 1: Time series showing the behaviour of the mean emf (averaged in the
horizontal and over the top half of the layer) for the rotating convection simulation
of Cattaneo & Hughes 2006). The three plots show the measured emf in each of
the three coordinate directions (z is vertical). The heavier line shows the running
time-average. The imposed magnetic field is in the x direction.
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Figure 2: Left panel: relation between |D| and Q for marginal stability. Dy-
namo action is possible above the curved line. Right panel: variation of spatial
wavenumber m and scaled frequency ω/ηℓ2 (dashed) as a function of |D| along the
marginal curve.

Figure 3: Left panel: regions of r, d space where various forms of solutions to
(14,15) can be found, with l = 10 . Right panel: variation of the periods of the
solutions with r for various values of d.
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Figure 4: Left panel: regions of r, d space where dipole, quadrupole and mixed
mode solutions are stable, for l = 10. Centre and right panels: blowups of the
region (a) and (b) in the left hand figure.

Figure 5: Greyscale plots of the toroidal field at the base of the convection zone
for the spherical model with G = βα2

0. From left to right:β = 0.005, 0.015, 0.0175.

Figure 6: Greyscale plots of the toroidal field at the base of the convection zone for
the spherical model with G proportional to the r-dependent magnetic diffusivity
η. From left to right:maxG = 0.001, 0.002, 0.003.

7


