CHAPTER 1

INTRODUCTION TO SELF -EXCITED
DYNAMO ACTION

Bendt Desjardins, Emmanuel Dormy
Andrew Gilbert & Michael Proctor.

The theory of self-excited dynamo action discussed througlhis volume was
first suggested by Sir Joseph Larmor in 1919 to account forrthgnetic field of
sunspots. It was later formalised mathematically by Wdlsasser (1946). The
objective of this first chapter is to introduce the subjeat provide the necessary
background for the later developments. We derive the ratea@uations and discuss
the usual approximations in Section 1.1. The concept of adgemeous self-excited
dynamo is introduced in Section 1.2. The existing theoaktiesults and neces-
sary conditions for dynamo action are then presented Setty and the essential
distinction between steady and time-dependent velodgiesade in Section 1.4.
We then introduce mean field electromagnetism (a contintiiame throughout the
book) in Section 1.4 and the difficult large magnetic Reysaldmber limit (relevant
to astrophysical problems) in Section 1.6.

1.1. GOVERNING EQUATIONS

1.1.1. MAGNETIC INDUCTION

The common aspect among all natural objects describedsvahime is their abil-
ity to maintain their own magnetic field. This is describediyy induction equation
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which we shall derive now.

We will deal with a variety of conducting fluids ranging fronoiten iron in the
Earth’s core to ionized gas in stars and galaxies. Yet thenetagfield in these
objects is usually well defined by the so called inductionaeigun.

INDUCTION EQUATION

Let us first recall Maxwell’'s equations
VxE=-0B, VxB=puj+enok, (1.1a,b)
V-B=0, V-E=p/e, (1.1c,d)

where the following notatio®, - = 0- /0t has been usedB is the magnetic in-
duction (sometimes refered to as the magnetic fidld)s the electric fieldj is the
electric current density,. is the charge density, is the magnetic permeability,
the dielectric constant. In the following we will assume thee-space value for the
magnetic permeability, ~ 11, = 47 x 1077 ande ~ ¢, = (u,c?) 7}, then (1.1b) can
be rewritten

VxB=puj+c?oE, (1.2)

the last term can obviously be neglected provided the tymelcity of the phe-
nomena we investigate (i.e. the ratio of a typical lengtHesta a typical time)
remains small compared to the speed of lightVe will therefore neglect this term
in the sequel, on the basis of a “low-frequency” approxiorati

V xB=pj. (1.3)

An additional constitutive relation is required, it is Olshaw relating electric cur-
rents to the electric field throught the electrical conduistio

j=oE. (1.4)

These equations are valid in a reference frame at rest. Bedhe fluids we will
consider are generally not at rest, it is necessary to intredome modifications
for the equations to be valid in the case of a moving mediunilowing standard
electromagnetic theory

-E
E/:(l—’}/u)lylu—Pu“"‘}/u (E“‘UXB),

(1.5a,b)

u-B uxE
B (1o fo e (B-25E).

wherey, = (1— |u|? /c?)~/?is the Lorentz factor.
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Under the assumption thair |<< ¢, the Lorentz factor can be set equal to unity.
From (1.1a), it follows that E |[~| u || B |, and the only modification associated
with the displacement of the reference frame is therefore

E=E+uxB, (1.6)
and Ohm'’s law then becomes

j=c(E+uxB). 1.7)

Let us now assume that the medium is in neutral state, moieigyp

pe=2Zin;—en, =0, (1.8)
wherep. is the charge density; is the average charge of ions in the medium, and
n. andn; are the number densities respectively of free electronsansd
As stressed by Roberts (1967), this assumption cannot beotigly valid in a fluid
conductor, since the divergence of (1.7) with (1.1d) ingplie

V. (uxB)=—p./e (1.9)
BecauseéV - (u x B) # 0 the charge density cannot be exactly vanishing. One can
however rely again on the smallness=ab neglect. in the sequel.

Electrical currents are present in the medium provideé u;, then
j :Ziniui—eneue, (110)

using (1.8) j=—-en.,u,, withu, =u, —u;. (1.11)

From a strict point of view, the three equations of motionidtdmow be established,
one for each: neutrals, ions and electrons.

The key assumption in single-fluid MHD is that collisions ocoften enough to

mechanically couple all three components. We need in pdatico formulate this

assumption for ions and neutrals. In fact, while this is idlea valid assumption

for the Earth’s core or for solar dynamics, in some weaklyzed plasmas relevant
to the interstellar medium (ISM), the drift of charged pelgs with respect to the
neutrals can become significant. This effect is referredst@ambipolar drift, or

ambipolar diffusion. We will not consider this effect at this stage.

1 The term “ambipolar diffusion” can be slightly misleadijmsince this effect is not strictly equiva-
lent to resistive diffusion. In particular, it preservesgnatic topology (as will be discussed later
for ideal MHD). Still, this effect acts to damp fluctuations small scales.
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The relative velocity of electrons to ions,, can be estimated from the ampli-
tude necessary to produce electrical currents compatilietee observed magnetic
fields for the geophysical and astrophysical applicatiaidressed in this book.

From (1.3) and (1.11) we write

: |B]
~— 1.12
which can be used to obtain rough estimatea/of
—in the case of the Earth’s core
1 —4
|ul | y ~10"ms". (1.13a)

e

S I x 107 x 10° x 2 x 10-19 x 102

—in the case of the Sun
107!

el ~107Mms!.  (1.13b
| 4 x 1077 x 2 x 108 x 2 x 10719 x 10% s ( )

—in the case of galaxies

5x 10710

~ 10" ms™" 1.13c
X107 x 109 x 2 x 109 x 108~ 10 ™S (1.13c)

!/
~
|ag |~

In all these cases the velocity of the flgwa | (i.e. ions and neutrals) is much
larger than/ v’ | . |u | is of the order ofl0~*ms~! in the slow moving liquid iron
Earth’s core, and much larger in the Sun and in galaxies. & hssthus extremely
small deviations from the mean velocity. We shall therefmept the “single fluid”
approximation, i.e. we will assume, ~ u; ~ u, and use a single fluid model,
while retaining the small differenca, = u. — u; only as a source of magnetic
induction.

The curl of (1.7), with (A.25) and (1.1c), immediately yis|d
OB =V x (uxB)+nAB, (whereA = V?), (1.14)

i1

the coefficient) = 1/(o 1) is referred to as thenagnetic diffusivityassumed here
to be constant. One must not forget the additional constpaovided by (1.1c):

V-B=0. (1.15)
It is to be noted that, provided this constraint is satified gtven time, (1.14) will
ensure it remains satisfied for all time.

In addition, this constraint can conveniently be used taitevthe magnetic field in
terms of a vector potentiagl
B=VXxA. (1.16)

+
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INFLUENCE ON MATTER

We have seen above how fluid motions can affect the magneticiion. The in-

duction equation derived above is the starting point of dyméheory. However with
this equation alone, and a prescribed flow, the field is gaaekhy a linear equation
(this is referred to as the “kinematic dynamo” problem, arnllilve discussed later
in this chapter). The magnetic field could then grow expaa#yntand reach unre-
alistic values. In fact a retroaction of the field on the flawthie form of the Lorentz
force, prevents such accidents.

The Lorentz force density is given by

Fp=nZ;(E+w xB)—ne(E+u, xB)=jxB=yu,"(VxB)xB,
(1.17)
where (1.8) and (1.10) have been used. This force densitieapp the single-fluid
described above. It can be expended as

to (VxB)xB=yp, ' [(B-V)B-1iV |BJ], (1.18)

where the first term is known as the “magnetic tension”, ardsécond as the “mag-
netic pressure”.

1.1.2. THERMODYNAMIC EQUATIONS

In the case of planets and stars, it is expected that cooveistithe main source of
motions. We will assume, for simplicity, a single driving amanism for convection
in this section. This is not fully valid for investigatingelEarth’s core, for which
compositional as well as thermal driving need to be consilerA similar set of
eqguations can however be recovered in this case by intnogaccodensity variable
accounting for both of these effects. For a rigorous daeowadf the equations in
this more complicated case and including turbulence miodglthe reader should
refer to Braginsky and Roberts (1995, 2003).

Denoting by P, p and T, the pressure, density and temperature, we assume that
the equation of state of the fluid is given by the followingetrthermodynamic
coefficients, the dilatation coefficient for constant puessyp, the specific heat at
constant pressurg>, and the polytropic coefficient:

T Op
ap = ————

p 0T

_0H

on _por
T

=53 (1.19a,b,c)

cp v

P P S
where H denotes the specific enthalpy, afddenotes the specific entropy of the
system.
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From the second principle of Thermodynamics, we deduce that
P
dE =TdS + —dp, (1.20)
P

whereE = H — P/p denotes the specific internal energy, and thus

08
=T—| . 1.21
cp a7, ( )
Finally, one can also introduce for convenience
10p ap
=—— =—. 1.22
=235, = o (1.22)

All thermodynamic relations are deduced from (1.20) andptieeeding three coef-
ficients. Indeed, from (1.20)

dP (1  Pa% dp apdTl
? (; + pTCp) = 7 + T (123&)
dS dT' PapdP
— == - — 1.2
cp T pTcp P (1.23b)
and 1dP d
agds = -2 22 (1.23¢)
y P oop

Introducing the heat productiaft), the heat fluxg, and the rate of internal dissi-

pation per unit volume (including viscous and ohmic dissipation), we can rewrite

the second principle of Thermodynamics, using the factihit = 0Q = —V - q

pD.E — %Dtp — _V.q+E&, where D,=8,+u-V (L24ab)

denotes the lagrangian derivative.

This expression, together with Fourier’s law of heat comiducfor the temperature
T (introducing the thermal conduction coefficignt

q=-kVT, vyields pTDS=V-(kVT)+E. (1.25a,b)

1.1.3. MNAVIER -STOKES EQUATION

The compressible Navier-Stokes equations include thareotyt equation,

Op+V-(pu)=0, or Diyp=—-pV - u, (1.26a,b)

+
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and the momentum equation, written in a rotating refererar@é
pDiu+2pQ2 xu=-VP—-pVd -V .17+ F, (1.26¢)

whereF represents the remaining body forces (including the Laréorce), andr
is the viscous stress tensor, with components

Tij = —2pUSij, Sij = €ij — % (V -u) ij 5 (1.26d,e)
v being the kinematic viscositys,; the strain rate tensor
Sij = 3 (Ou; + O5u;) (1.26f)

and® includes the gravity potentiat, and the centrifugal potentidl,.

The apparent gravity field is then provided §y= —V ®. There are here two con-
tributions to®. In a non rotating problem, the gravity potential is simphtained
from
Ad, =4rGp. (2.27)

In a rotating fluid, this potential is complemented by theeeffof the centrifugal
potential

0252
==
For a galactic disk, density is low and centrifugal effectsessential. They balance
the radial component of gravity. As a result, the appareatigr is oriented along
the axis of rotation.

P Adg = —202. (128a,b)

For much denser objects, like the Earth or the Sunydteof the centrifugal effect
is much smaller. It essentially flattens equipotential atet. This effect is minute
for these objects, which are almost spherical bodies. Utdeassumtion, gravity
potential varies only with radius. On a given sphere of radjand outward normal
n:
V& -ndS =4rG pdV | (1.29)
S(r) V(r)

masses at larger radii cancel their contributions. So thaafsphere of uniform
density, gravity is proportionnal to radius:

g = —%TFGpT €. (1.30)
Note that using (1.26a,b), the energy equations (1.24apeaawritten as
pDE+ PV -u=V-(kVT)+E. (1.32)

These equations need to be complemented by an equationefedtatingP, p, and
T as described in the previous section.

This set of equations is appropriate to describe the dyrmpfigalaxies. Simpler
models can however be derive for convection in planets ard.sthis is the objects
of the next section.



12 Benoit DESJARDINS& Emmanuel DbrRMY

ANELASTIC APPROXIMATION

Two major steps constitute the anelastic approximatior fifet consists in filtering
out acoustic waves, while the second is a linearization ofdlating variables around
the reference state. Both can be achieved by an appropxisé@sion.

In order to derive the most classical approximated modeats,emwrite the above set
of equations in dimensionless form. Let us introduce a glpielocity U., length

L,, densityp,, and temperaturé,. Equation (1.23b) provideB, = p.T\c, /a,, =
p«T./as,. Having set four units, and since nine parameters define mbigm

(L, T, ps, cp,, 0, v, k, G, ), five independant non-dimensional combinations can
be constructed. We define the Reynolds nuniberthe Rossby numbéto (mesur-

ing the ratio between the rotation and the hydrodynamic teede), the Froude
numberFr (mesuring inertia versus gravity forces), the ratiocof gravity to pres-
sure forces, and finaly the Prandtl number

_ U.L, U, U2 U2

R Ro=— Fr = = 1.32a,b,c

¢ v © QL,’ g L.g. 4nL2Gp,’ ( )
PxGs Ly aS*p*47rLfG vp«Cp U

X = = Pr=—F=—. 1.32d,e

P, 7. TR Tk (1.32d.€)

The equation of mass conservation remains unchanged, agtre momentum and
energy equation can be rewritten (note th& now dimensionless) as

2 1 1 2
D — ok =———VP+ — —V- 1.
phut popkxu=—35 VP4 gres+ g2V (0s), (1.33)

wherek denotes the unit vector along the rotation axik,= €2 .

To simplify the following development, we have dropped hiwe forcing term#r.
The magnetic field being maintained by convective motioms,Ltorentz force will
be re-introduced later in the resulting equations. Thigéifioation although conve-
nient, is not necessary. For a full treatment, includingltbeentz force, the reader
is refered to Lantz and Fan (1999).

Finaly the entropy equation becomes

Cp AT — 2XFr

TD.S =
P 5 PrRe as, Re

psS €. (1.34)

Let us stress again, that although we use the same symbalewasysly, all quan-
tities are now dimensionless. Besides, we used the notatidor the double con-
traction of two tensors, i.e.

s:e=1Tr(s-e)=s;€j. (1.35)
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Heat transfer will be particularly important for stars ardnets since it will induce
convective motion directly related to dynamo action. Simeeare dealing with
convection, it is helpful to define a reference state. The kefserence state is the
neutrally stable one, of constaft(this is not the diffusive state). The governing
equations can then be rewritten for deviations over thisregfce state. This leads to
the “anelastic approximation”.

It will be assumed that deviations are small compared to éfierence state. This
assumption is well justified in a strongly convective statd away from boundary
layers.

The reference state is assumed to be fully decoupled fromitgesnonlinear cor-
relations of the perturbed state, so that the dynamigs, 0ofi, and S, is given as-
suming an isentropic equilibriun™M S, = 0). Finaly, let us remind that in the limit
of no thermal or radiative conduction, entrofyis uniform, and the corresponding
temperature profile is the adiabatic profilg

All quantities are expanded as
P = po+Eppr, P=Fy+eph, (136a,b)

T="1Ty+er17 , S = SO + 535’1 . (136C,d)
Linearization of the equation of state around the referatate provides

Ep =Ep=ET7 =Eg=E¢€.

Let us insist that all quantities in this expansign, p1, Py, P1, To, T1, So, S1) are
order one.

Mass conservation thus becomes

9(po+ep1) + V- [(po+ep)m] = 0. (1.37)

At leading order (because is not a function of time)
V - (pou) =0. (1.38)

Neglecting higher order terms ensures the filtering of Elagves out of the result-
ing model, thus the name “anelastic”.

The conservation of momentum can be expressed in a similanena

1 2
(po +ep1) [Oru+ (u- V)u] + EV(PO +eP)+ %(po +ep)k xu
1

2
= ﬁ(ﬁ?o +ep) V(P +ePy) — QV [(po + ep1)(s1 +?s0)] -
(1.39)

+



+
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The coupling between energy and Navier-Stokes equatiothssitimiting process,
necessary for convection to occur, requires F'r. This scaling reveals at leading
order (1/¢)

1
}VP() == —poV(I)o . (140)
Equation (1.40), together with (1.23c), provides the bedarelevant for the refer-

ence state.
At the next order4®), we get

%Vpl + %Pok Xxu=—pyV® —pVPy— %V “(pos1) -

(1.42)
It can be useful to manipulate this expression, followingddnsky and Roberts
(1995, 2003), by making use of thermodynamic relationsnF{b.23c)

0— 1VFE  Vpg

po[Ou+ (u-V)u]+

; 1.42
v B Po (1.42)
while from (1.23b) and (1.23c), we obtain
cp cp 1P p
- T — d =_--I=, 1.43a,b
S Ty h poTo B, an a5 YR po ( ab)

Hence it follows that

Py
X po

1 P
— 5 VP = Ve = V& =~V ( + @1) - X—lwo + Vg,
Lo

P P 1P
— VY Sl — (2 Vo, from (1.43b
Po (Xp0+‘1)1> Xy VPO (’y 2 04551> poV Py from (1.43b)

P
= _pOV <X ! + (I)1> — poa551g0 from (142) and (140)
Po

Thus equation (1.41) can be rewritten in the more compaunt for

@u%—u-Vu%—ékxu =-V <Xi,;0 + <I>1> —agS180— ﬁv-(po s1). (1.44)
In the more general case when more than one driving mechasisonsidered (e.g.
thermal and chemical in the Earth’s core), it can be convengeintroduce a unique
variable in the momentum equation. This can be achieved togducing a co-
density variable” (see Braginsky and Roberts, 2003), which reduces in ourlsrmp
case toC' = —ag95].

The entropy equation then provides

Cp

RePr

(po +ep1)(To +€T1) (0:(So +€S1) +u - V(Sy+¢51)) = ATy + €Th)

+

+
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2XF
- ~(po+epr) (s1 4+ V%) 1 (€1 + %) . (1.45)
g, Re
At order )
poTo Cp 2X
oS -VS) = AT, — DEer. 1.46
Py (0,51 +u 1) Repr —1 aS*RepOSI €1 ( )

Equations (1.38), (1.44), and (1.46) constitute the atielagstem.

The system governing the slow evolution of the referende sta

VSO = 07 pOVPO = ’YPOVPO y (147a7b)
1
?VPO = —povq)o , A(I)O = o - (147C,d)

This yields the adiabatic temperature proffé]7, = —A'V®,, and is completed
by the equation of state relating, po, 7 .
Convection over this reference state is then governed by

ou 2 P, 2
E—i—(u-V)u%—%k Xxu=-V {X—;o—i_@l] — agS18 — Re—pov'(posl)’
(1.48a)
B poTo @ G B 2X .
v (poll) = 0, e ( ot +u V51> = Re Pr ATl s, Re PoS1 €T
(1.48b,c)

No separate equation is needed for the quaNity; /X' py + ®4] since it acts as a
Lagrange multiplier to satisf¥ - (pou;) = 0.

Let us stress to conclude this section that under the abeeeshied approximation
o, << ¢, the reference state only depends on the radial coordifiaeanelastic
system can then be introduced as a decomposition of eadbiafiinto a spheri-
cally averaged reference statend a perturbatiorf’

f(r7 07 ¢7 t) = 7(r7 t) —"_ € f/(r7 07 ¢7 t)
(e.g. Gough 1969, Latowst al., 1976). This formulation allows to introduce a
slow evolution of the reference state (not necessarily ciible with the above
expansion).

We only derive here these equations in their simplest fomnther important effects
can be introduced, such as turbulent transport coeffic{exfgected to be dominant
in the solar convection zone). The effects of compositi@oavection can also be
envisaged. This is a major ingredient to the Earth’s coreadyns. For a complete
treatment including both thermal and compositional (ars® @ahcluding the effect
of turbulent motions), the reader is refered to Braginsky Boberts (1995, 2000).
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THE BOUSSINESQ APPROXIMATION

When the region of fluid is thin enough (in a sense to be cldriféer) a more
drastic approximation can be introduced, the Boussineptpapnation. It is often
used for thin layers of fluid in the laboratory. Pressurectffare then unimportant,
and the adiabatic temperature profilecan be assumed to be constant. This allows
important simplifications in the equations.

Although this is less easily jusified for the large scale@stysical bodies described
in this book, the Boussinesq approximation provides a ma@dnle approximate
model for the Earth core (see Chapter 4). We will thereforgcdbe this further

simplification.

If X << O(1), i.e. if the size of the system is small compared to the tymieath
of an adiabatic gasH./p.g.), compressibility of the fluid under its own weight can
safely be neglected.

For all quantitiesr expanded above in; + cx; [see (1.36)a—d], we now introduce
a second expansion in terms.&f

To = Too + XTo1, r1 = X190+ Xx11 . (1498.,b)
System (1.47c,c) at orde¥ ! reveals
V Py =0, (1.51)

and it follows that the temperature and density of the refegerofile are constant.
System (1.48) at orde¥ ! gives

VP =0, (1.52)

while it provides at ordeA™®

2 2
8,511 + (u : V)u 4+ —kxu=-VII-— Oszlogoo + —Au, (1533)
Ro Re £0
_ pooToo ((OS10 1
V-u=0, & < It +u V510> = —Re Pr ATy . (153b,C)

All gradient terms have conveniently been writterNaH in (1.53a), this term being
a Lagrange multiplier to satisfy (1.53b). It follows from%2) that
T
Sio = CPT_;Z . (1.54)
We will further need to assume at this stage that we are dgualith a perfect gas,
cp can then be regarded as constant.
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It is usual in the Boussinesq formalism to introduce the faaent of “thermal ex-
pansion”a. Itis defined, using dimensional variables, by

9 _ oot (1.55)
0

and relates to the previously introduceg andap through

a—_L (0
 p \OT

In dimensionless from (for clarity, we introduce here aalifint symbol) it yields

agCp ap
= = 1.56
T (1.56)

o =agcp =ap. (2.57)

System (1.48) then becomes,
1

2
du+ (u-V)u+ —k xu=—VII - o'Tiog + —Au, (1.58a)
Ro Re
1
V.-u= 0, 8tT1() +u-VT1Tig= —— ATlo . (158b,C)
RePr

In the Boussinesq approximation the entropy and the tertyperare equivalent up
to a scaling factor (1.54). To recover a more classical dsiwetless formalism, let
us assume that a super adiabatic entropy gradient is nregdtaiccross the system.
This gradient provides the natural unit for temperaturejemie velocity scalé/,
can be setta/ L.

One can then introduce the Rayleigh number, and the Ekmambenimespectively

a AT g, Lf v
Ra = — and E = e (1.59a,b)
Using (1.36), one recovers the classical system
2Pr
Ju+ (u-Vju+ Tk xu= —VII —RaPrTg,+ PrAu, (1.60a)
V-u=0, T +u-VT =AT. (1.60Db,c)

Finally, it is often useful to decompose the temperaturel fieltwo contributions,
a steady contribution satisfying the boundary conditiargd(balancing an internal
source term, if any), and a perturbation with homogeneousadbary conditions (and
governed by a homogeneous equatidh)= 7, + ©. ProvidedVT, x V& = 0 (as
will be the case under for a perfectly spherical probleng,rssulting system is

du+ (u-Viu+ %Prk x u = —VII — RaPrOg, + PrAu, (1.61a)
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V.ou=0, 8,0 +u-VT,+u-VO =A6. (1.61b,c)

To conclude, let us stress that since all gradient termsnataded in theVII term
(acting as a Lagrange multiplier to satisfy incompresgi)il when the magnetic
field is included and the Lorentz force applies, the magnetessure term will
therefore not enter the dynamical balance. This term caduyme buoyant effects
in regions of localized intense field. Such magnetic buoyasdelieved to be of
particular importance for solar dynamics. It is possibledastruct approximations
which retain this dynamical effect while considering simpicompressible fluids.
This is done very much in the same way as thermal buoyancydwasretained here.
We refer the reader to Spiegel & Weiss for such a derivatiohiezred at the cost of
relaxing (1.1c).

1.1.4. BOUNDARY CONDITIONS

When investigating a planet, a star, or a galaxy, it is corergno consider a bounded
finite volume of spac® in which the relevant physics will be investigated. While
the fluid can often be assumed to remain within this volume niilagnetic field on
the other hand cannot easily be artificially confined. Thd,faed most natural
assumption is to assume that the outside world (i.e. the mgntary domain to
the finite volume of interestD) consists of vacuum and is insulating. No electrical
current can therefore escape the volumeand the resultingy x B = 0in “D,
together withV - B = 0 imply that the field infD derives from a potential

B=-V®, and A®=0. (1.62a,b)

The above relation on the field in the complementary domawiges the necessary
conditions to compute the field evolutionZhonce continuous quantities acres3
are identified. Equation (1.1c) implies that B is continuous across the bound-
ary, while equation (1.1a) implies the continuity wfx E (n is the normal to the
boundary). These can be used to reduce the induction prablenelosed integro-
differential formulation orD (e.g. Iskakov & Dormy, 2005).

Let us note that, while this choice of boundary condition igey natural one and
will in fact be the only one used in this book, some astroptgidbodies (like the

Sun) are bounded by a conducting corona. For such corortangatan balance the
Lorentz force in the momentum equation. As a result, the fieklto relax to a state
for which the Lorentz force vanishes. Such state is known ‘dsrae-free” state.

Interestingly, the field is then prescribed from the momemaguation rather than
the induction equation. FroifW x B) x B = 0, one deduces that

VxB=aB, with (B-V)a=0, (1.63a,b)
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whereq is real, and must not be confused with the notatiom meanfield theory
(although thex in meanfield theory relate¥ x B to B as well, it derives from a
different physical reasonning). Unleass artificially assumed to be uniform D,
the resulting problem is non-linear and very difficult to eek$ (even determining
the necessary conditions oD to determineB in °D is not a trivial issue. So far,
to the authors knowledge, no dynamo model has been produicedhs type of
bounding domain (even in the linear approximation). Soladets presently rely on
the matching to a potential field as expressed by (1.62) (bept€r 6).

Boundary conditions on thermodynamic quantities are, oieipg on the problem
of the Dirichlet type (fixed value) or of the Neuman type (fixeck).

Boundary conditions on the fluid flow usually require non-gteation of the fluid at
the boundary
n-u=0. (1.64)

While this condition is sufficient when viscosity is omitteadditional conditions
are needed if it is retained. These usually resume for thigroations investigated
in this book to either “no-slip” (1.65a) or “stress-free”§bb) conditions:

nxu=0, o n-V(nxu) =0. (1.65a,b)

1.2. HOMOGENEOUS DYNAMOS

1.2.1. DSK DYNAMO

Letus now introduce the dynamo instability on an apparesgty simple device: the
“homopolar dynamo” or “disk dynamo”. Let us consider a coctthg disk of radius
r, free to rotate on its axis [see Figure 1.1(a)]. If one plaxgermanent magnet
under the disk and rotate the disk at angular veloQityren an electromotive force
will be driven between the axis and the rim of the disk. If adweting wire connects
the rim of the disk to the axis then an electrical current wéldriven through this
wire. This setup was originally introduced by Faraday in 1L88is a dynamo (it
converts kinetic energy to magnetic energy), but it is nose@f-excited dynamo”,
since it relies on a permanent magnet. Introducing the niagfiex through the
disk ® = Bnr?, we can quantify this electromotive foréeby integratingu x B
across the disk. Assuming for simplicity a uniform and \etifield B = Be, one
gets
O Br? 1Y
2 21
If one now replaces the permanent magnet with a solenoid dchfctancel (see
Figure 1.1(b)), one faces an instability problem. If theatimin rate is small enough,

g:

(1.66a)
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(@) — (b) —

Figure 1.1- (a) The original Faraday disk dynamo. (b) The homopoldresadited
dynamo.

the resistivity will damp any initial magnetic perturbatio If the rotation rate is

sufficient (in a way we will immediately quantify), then thgsteem undergoes a
“bifurcation” and an initial perturbation of field can be alifipd exponentially by

“self-excited dynamo action”.

Let us introduceV/ the mutual inductance between the solenoid and the diskhwhi
allows us, usingb = M to rewrite
_ MQI

&= . (1.66b)
2

Then, R being the electrical resistivity of the complete circufte tgoverning equa-
tion for the electrical currents in the system is

dI MQI
L — I= : 1.67
dt 1 27 (1.67)
It follows that the system is unstable provided
2R
Q>0 =—. 1.68
” M (1.68)

In practice, the value df). for an experimental setup would be too high to be re-
alistically achieved. While this setup offers a simple dggon of a self-excited
dynamo, it cannot be constructed as such in practice (eadleR& Reinhardt,
2002).

It is worth stressing here that this mathematical desompaf the physical setup
is oversimplified. Further developments and refinementsheildicussed later in
the book. Further more, we only consider here a linear prablEhe currents here
appears to grow indefinitely. This is because the Lorentzefacting on the disk to
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slow it down has been neglected. This force is the essencéhafdasetup that can
also be constructed using such a disk configuration: theo#®asiheel. In this setup,
no torque is externally applied to the disk. Instead a batteplaces the current-
meter of Figure 1.1(a), and the interaction between thisectirand the externaly
applied magnetic field causes the disk to rotate.

1.2.2. HIRALITY AND GEOMETRY

The simple disk dynamo just described, of course does natggssall the features
found in fluid dynamos. One property that it does possesatsfithirality ; there
IS no symmetry between the system and its reflexion. Thetreof rotation of the
disc compared with the way in which the coil is wound (i.e. $ign of 2M1), is of
crucial importance. It will be seen that chirality is veryportant for the production
of large scale magnetic fields by fluid dynamos, though it isessential for the
production of local small scale fields; this is accomplishgdtretching instead. The
disc dynamo has no stretching properties, which on the fatterms would suggest
that magnetic energy could not be increased. However tleelglis|amo is not a fluid,
and currentis constrained to flow in the wires and throughlibe This corresponds
to a highly anisotropic electrical conductivity, while ilnamogeneous fluid dynamo
one expects the conductivity to be isotropic, at least tasadpproximation. The key
to a successful dynamo is to get the currents to flow in suchyahed the resulting
fields reinforce those previously existing - not a trivisskdor homogeneous fluid
bodies! In general currents will wish to take the shorteshgand unless the flow
fields are sufficiently complicated they will simply not bdeto produce the correct
topology for sustained growth.

In fact it is notable that astrophysical bodies such as tthiad Sun in which large
scale fields are generatddin fact possess symmetry under reflection and exchange
by rotation of North and South poles. So while local progsrtof motion in these
bodies are chiral, the net lack of chirality distinguishasnh from the disc problem.

1.2.3. BASIC MECHANISMS OF DYNAMO ACTION

The dynamo process is in essence a way of turning mechanieajyeinto magnetic
energy. To see this we can take the scalar product of the tiotduequation (1.14)
with B, integrate over some suitable domain and obtain, after Sotegration by
parts and ignoring all boundary terms:

1d

55/|B|2dx:/B-(B-Vu)dx—n/]VBde, (1.69)
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The second term here is negative and represents the canvefstnergy into heat
due to Ohmic losses. The first term (due to induction) can Weitten (in the case
V.-u=0)as— [u-[(B-V)B]dx and this is just the negative of the work done
by the velocity field against the Lorentz force. Clearly thean be no growth of
magnetic energy, let alone total magnetic flux, unless tthedgtion term is effective.
We can see how induction can act to increase magnetic engiggidring the effects
of diffusion entirely. We are left with the reduced system

0B =V x(uxB). (1.70)

This is formally identical to the vorticity equation far = V x u in an inviscid fluid,
and we can therefore take over many results about the kimesyatvorticity (but
not, note, of the dynamic aspects, since in MHD we do not e V xu!). In
particular, Faraday’s law that the total flux threading aemat elementis conserved,
is completely equivalent to Kelvin’s circulation theoreie, ¢, u-dx = [(w-dSis
constant for material curvgsspanned by material surfac8sThis has the corollary
that “vortex lines move with the fluid” (Kelvin). For magnefiields the analogous
“freezing-in” result is called Alfvén’s Theorem. Considinen vortex stretching.
In an extensional flow involving contraction in two direct®and expansion in the
third, a material tube of vortex lines aligned with the exgliag direction has con-
stant total vorticity at every cross section. Since thessextional area is diminish-
ing, the local vorticity must increase, and so since the maus fixed the integral
of |w|? also increases. Exactly the same argument can be appliegaigoetic fields,
with the result that such stretching flows can increase ntageeergy. Note, how-
ever that the total magnetic flux is not increased, so thisha@sm as it stands is
not able to account for any increases in e.g. dipole momardsnducting spheres.
In addition, in a finite domain stretching must be accompaig folding, as in
kneading dough, and this second action will in general bdppgositely directed
fields together, where they will cancel due to Ohmic dissgoat This does not al-
ways happen though, as can be seen from the Vainshteinxdgtdddynamo (the
Stretch-Twist-Fold, or STF mechanisleads to the effective doubling of the energy
of a loop of flux, as shown in Figure 1.2. This is the most draeretample of a
number of transformations of the space that can lead to mettking. More explicit
examples of the consequences of folding and stretching ise& ¢n Section 1.6.
There are outstanding questions as to whether such foldingexist throughout a
homogeneous fluid; in general some cancellation will ocdarparticular, when
fields and flows are two—dimensional there is always too malchirfg, cancellation
always dominates stretching and fields will decay. A simgknaple is provided by
the non-dimensional flow field = (—z, 0, z) (where the timescale has been based
on a typical velocityU, and a typical lengtiC), with B = (0,0, B(x,t)). From
(1.14) we can see, introduciiyn = UyL/n, that B obeys

B —10,B=DB+Rm'0,,B. (1.71)

+
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Figure 1.2- Sketch of the STF mechanism (after Featral1988). The final mag-
netic flux is doubled.

If B(z,0) = Re {e**} then
B(z,t) = Re {f exp [t — kj(e* — 1)/2Rm] exp (ikoe'z) } , (1.72)

so that| B| eventually decays superexponentially. This is due to siiffi acting on
the exponentially increasing gradients caused by foldingpite of this, however,
we can have transient growth of magnetic energy for longgimeén(Rm/kZ2). As
Rm — oo energy can increase indefinitely. This example is instvacdi that it
points up the singular nature of the infiniten limit; the limits of large times and
large conductivity cannot be interchanged.

1.2.4. FAST AND SLOW DYNAMOS

An important application of dynamo theory is to astrophgbkapplications, in which
we need to understand the behaviour of dynamo growth rates Rimis very
large. WhenRm is of order unity, the two intrinsic timescales, associanath
the turnover time and the Ohmic diffusion rate are compardhit at largeRm the
turnover/advective timescale is much shorter, while then@Hime is longer than
any recognisable magnetic process. Thus we ask; can magnetigy (or magnetic
flux or dipole moment) grow at a rate independent@sn — 0? This leads to the
distinction between fast and slow dynamos. The subjeceatdd in much greater
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=

) insulating strips

Figure 1.3- The segmented Faraday dynamo (Moffatt, 1979). The insglatrips
in the inner part of the disc ensure that the current is radexke.

detail in Section 1.6: here we give only a brief outline, camtcating on the problem
of growth of flux at largeRm.

For aslow dynamagrowthrates (on the advective timescale) 0 asRm — oo,
while for afast dynamarowthrates (or at least thin sup if there are many modes)
do not tend to zero at largem. In this case the field appears on all scales as
Rm — oo, and diffusion can never be neglected. This important pess first
made by Moffatt and Proctor (1985). While as we have seereas$y to produce an
increase in magnetic energy if diffusion is entirely netgelc an increase of mag-
neticflux of dipole moment can only occur due to the presence of ddfugs shown
by Faraday’'s Law). This is necessary to get round flux comsienv as diffusion be-
comes negligible. The Faraday disc dynamo has been distus&ection 1.2.1.
Here we examine a modification introduced by Moffatt (19¥@)ich illustrates the
role of diffusion in preventing fast dynamo action. This is thgeented Faraday
dynamo (see also the brief discussion in Section 2.8). les bnderstood by ref-
erence to Figure 1.3; the difference from the usual singée diynamo geometry,
as shown in Figure 1.3 is that currents are constrained teerramlially on the disc
except near the outer edge.

We can write down simple equations relating current in thewj current round the
disc J, the angular velocity? and the fluxes through the wire and disc, respectively,
®;, ;. We obtain

d®;

do,;
dt

O, =LI+MJ, ®;=MI+L'J, RI=Qd;— T

, RJ = (1.73)

We seek solutionsc e, As for the usual dynamo, we find growth(i\/ > R. The
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growthrate is

V(RL + RL)? +4R(QM — R)(LL' — M?) — (RL' + R'L)

P+ = 2LL — M?) (1.74)

We can see that, > 0 forall Q > R/M butp, ~ VQR asQ) — oo. Thus
the growthrate is controlled by diffusion and not exclubiMey advection, and in
particular the growthrate tends to zero on the advectivegale!.

We shall discuss further aspects of fast and slow dynamoraitirealistic flows in
Section 1.3; the whole subject of the fast dynamo problemesté¢d in much more
detail in Section 1.6.

1.3. NECESSARY CONDITIONS FOR DYNAMO ACTION

1.3.1. DEFINITIONS OF DYNAMO ACTION

In this section, we describe various rigorous results carieg dynamo action. It
is helpful first to give a precise definition of what is meantdynamo action: the
definition depends on the geometry considered. We can cameither a bounded
conductor surrounded by insulator, or magnetic fields awasfitefined in a periodic
box. Many generalizations are possible (for example, omkdomonsider the effects
of an external stationary conductor, as was done by Prat®3i7a), but the details
complicate the analysis.

Case 1:Finite conductor.
Supposa is defined in a finite volum®, surrounded (iiD) by an insulator.
In D we haveV x B = 0, with all components oB continuous atvD,
because there are no surface currents. We suppose no siatenfinity, so
that|B| ~ O(|x|™?) as|x| — oo.

Case 2:Periodic dynamo.
B is defined in a periodic domail € R?, with [, B dx = 0.

In each casa satisfiesV-u = 0, and has time-bounded norm (for Case 2, we choose
a frame so that the mean valuewobanishes. Several different norms can be defined,
for exampleU = maxp(|ul), S = maxp; ;(|0;u), EY? = ([, |Vu|2&lx)l/2 e

etc. In Case 1, we suppose that= 0 on 9D (this is not strictly necessary for
some of the bounds but aids the analysis). Then we can de@madgnetic energy
M = 3 [|BJ?> dx where the integral is ovék® in Case 1, or oveP in Case 2. The
usual requirement for dynamo action is thlett does not tend to zero as— oc.
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1.3.2. NON-NORMALITY OF THE INDUCTION EQUATION

In the next subsections we give several criteria which,afated, rule out dynamo
action. These araecessary conditiondt is notable that there are no general suf-
ficient conditions known for dynamo action; working dynantas only be found
by explicit integration of particular flows. This is becaubke induction equation,
considered as a parabolic linear operatonaa-normaj whenu is independent of
time, the eigenvectors found by looking for solutiorsxp(pt) are not orthogonal,
and so even when all eigenvectarhave negative real part, i.e. when we have a
non-dynamo, the magnetic energy can still increase for some The condition
that the energy decays is much stronger than that the speisin the left hand half
plane. The situation is analogous to that of the stabilitghadar flows, for which the
energy stability result of Orr gives a bound on the Reynoldgisiber that is far be-
low observed stability thresholds. A simple example of #ifect is provided by the
interaction of a purely zonal flow with a meridional field inghere. For larg&m

the zonal field increases more rapidly than the meridion& flecays, leading to
transient growth of the magnetic energy, but the merididietd eventually decays
and the whole system runs down.

1.3.3. H.OW VELOCITY BOUNDS

If we nonetheless try to find conditions for the decay of thegnadic energy, we
focus on (1.69), which gives us in Case 1

dM
e =P-nJ, (1.75)
whereP andJ can take the alternative forms:
P = / (B - Vu) dx-/(uxB)-(VxB)dx, (1.76)
D
.7:/ A% ><B|2dx:/ |VB]2dx, (.77)
D R3

(for Case 2, we have the same results, but all integrals kea @averD).

In order to construct the proofs we shall needaencaé inequality Defining F =
1T /M, we haveF > ¢ 2; ¢ « ([,dx)"?. For a sphere of radius, ¢ = a/m,
while for a periodic cube of side, ¢ = a/2x. The proof of this result can either be
done by the standard methods of variational calculus, oxpyessing the magnetic
field in terms of spherical harmonics.

Using the above inequality together with (1.75) in the case® = 0 (stationary
conductor) we have the result thafin M)/dt < —27c¢ 2, so that the magnetic
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energy decays exponentially at a finite rate. It is not sanpgi then that a finite
velocity is needed for dynamo action to be possible. We cahidounds on each of
the three norms defined above. We have the following bound®:on

(a) P< U/ B VB|dx < U2M)Y2 7% Childress (1969) ,
D
(b) P < S(2M) Backus (1958),
1/2
(c) P<EY? </ ]B]4dx> < EY2e,2M)VA T34 Proctor (1979),
D

wherec, is a dimensionless constant (Proctor (1979) gives the vgludsing these
results we can get three bounds on the exponential growthiratd(In M) /dt:

—_

(a) o <FAU—net),

— N

(b) =0 <S—nc?,

(¢) =0 < FY4EY? — e 1/?).

N — DN

So if M is not to tend to zero we must hale> n/c, S > n/c*, E > n?/cct. (The
first result can be proved under the less restrictive assampt- n = 0 on 9D.)
BecauseF has a minimum value we can get upper bounds amcases (a) and (c)
that do not involveF:

1 u?
@ o <max |-G ]

1 : 27c¢{E?
(c) 39 < max [(01E1/203/2 —nc?), 2;2773 ] .

Itis notable that none of these bounds involves the kirstiergyk = 3 [ [u[?dx
of the velocity field. In fact a working dynamo can be foundhnatrbitrarily small
energy. Consider a velocity fieldin a sphere of radiug surrounded by stationary
conductor. For a steady dynamo the induction equation &i@mt undex — x/R,

u — Ru, K — RK. Thus ask — 0 the necessary energy 0. The argument can
be extended to the case where the conductor is replaced®sisme large radius
by an external insulator.
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1.3.4. CEOMETRICAL CONSTRAINTS

These conditions are of two kinds; restrictions on the matiflowsthat can give
growing field, and constraints on the typediefd that can be sustained by dynamo
action. In the first category, until recently the best resuds thetoroidal theorem
of Elsasser (1946), Bullard & Gellman (1954) (see also MafteD78). For Case 1,
if we multiply (1.14) byr = r e, and integrate then we obtain (definifg= B - r,

Q=u-r),
HP+u-VP=B-VQ+nAP inD, (1.78)

with AP = 0in “D, and P, 0P/0r continuous ordD.
If V-u=0,we can separate into toroidal and poloidal partsr, up, where

u=ur+up=Vx(¢r)+ VxVx(r). (1.79)
It follows that@ = L., whereL, is the angular momentum operator, defined as

Ly = (r-V)>—1r2A. (1.80)

A similar decomposition can be made Bt with
Br=Vx(Tr), Bp =VXVXx(Sr), with P = L,S". (1.81a,b,c)

If therefore the velocity field is toroidal; = 0 and so@ also vanishes. Then (1.78)
reduces to a sourceless diffusion-type equatiorffoso that

%@/ Pldx = —77/ |V P|?dx < —7702/ P?dx = |P| —0. (1.82)

D R3 D

Once|P| and so|Bp| becomes negligible the equation for the toroidal part of the

induction equation can also be simplified. NawB are both toroidal, and
Vx(uxBr)=V x[-r(u-VT)|. (1.83)

After “uncurling” (integrating and setting the arbitraryriction ofr that arises to
zero without loss of generality), we obtain

0T +u-VT =nAT ,withT =0 on 0D. (1.84)

Apart from the boundary conditions this is the same equat®satisfied by’, and

we can show by similar means thft 7°dx — 0 (exponentially) also. While this
result does not rule out a transient increase in the mageegogy ofB7, which
depends upon mean square gradient§’pft can be shown that if the magnetic
energy doesottend to zero thetF must increase without bound, and so eventually

+
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Childress’ result above will be violated, giving a cont@ain. Thus a dynamo is
impossible.

A similar result holds in cartesian coordinates (Case 2gmwh- z = 0, then
&B,+u-VB, =B -Vu,+nAB,, (1.85)

and we can apply exactly analogous reasoning (Zeldovichi/)19

Busse (1975) used (1.78) whéh=~ 0 to obtain a bound on the ratio of toroidal and
poloidal field energies. We have

1d

- P2dx:—/QB-Vde—n/ |V P2dx
2dt D D R3

1/2
§maxQ<2M'2/ ]Bp|2dx> —277/ IBp|*dx
D R3 R3

where the inequalityf,, |Bp|?dx < 1 [, |V P|*dx has been used (see, for exam-
ple, Proctor, 2004). Then we have the result that

1 1/2
mgx@ > <M g |Bp|2dX) . (1.86)

Though this result may be useful in interpreting geomagruota, it is not of course
an anti-dynamo theorem. Nonetheless it turns out that (ghtrbie expected) dy-
namo action can be ruled out if the poloidal flow is sufficigntieak for any given
toroidal flow. In fact it is possible to find inequalities fame derivatives of”? and
T2, namely (choosing some constant- 0)

%% </D(P2 +uT2)dx> < <% - ) (P?+uT?)+|a?Up + g(UT + Up()} P?,
1.87

whereP? = [, |VP|*dx, T° = [, |VT|*dx, andUp, Ur are the maxima offup|,

|ur| respectively inD. For an appropriate choice of we can show that the best
possible condition under which the left hand side is negal®finite is

2
(J,QUP (UT + Up) -2 ( — %) <0 or GQUPUT + 2\/5?76LUP < 2772
(1.88a,b)
(Proctor, 2004). Poincaré inequalities may be used to shatithe integrals of both
P? andT? decay exponentially, and this implies eventual decay ofntagnetic
energy as argued above. The result (1.88a,b) does not ruélyvamo action when
the velocity fieldu is purely poloidal; and indeed there are examples in thealibee
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(b)

Figure 1.4 - The poloidal dynamo of Gailitis (from Gailitis 1970). Thew is

axisymmetric, while the magnetic field is proportionakto. Two different parities
of solution are shown. Suffix 1 refers to fields generated byldiver ring, suffix 2
those due to the upper ring. For more details see e.g. le¢atii1988)

of dynamos with purely poloidal velocity fields. A classicaexple is provided by
the twin-torus dynamo of Gailitis (Gaillitis, 1970), see g 1.4.

As regards constraints on the field, the main resuftasvling’s TheorenfCowling,
1934): An axisymmetric magnetic field cannot be maintaimgedynamo action. It
should be noted that B is axisymmetric then so i8 but the converse is not true,
and the dynamo of Gailitis (1970) above provides an exampnaxisymmetric
flow field which acts as a dynamo for non-axisymmetric fieldbefe are several
proofs of this in various cases. We first follow the proof ofBinsky (1964). We
again assum¥ - u = 0, and that the conducting regidnis spherical. Sinc®, u
are axisymmetric we can separate the zonal and meridionalgig1.14) by writing
(in polar coordinatess, ¢, 2));

B = Bey+ V x (Ae,) = Be, + Bp, u=up+Ue,y. (1.89a,b)

Since there are no imposed zonal currents, we get

1 1 1
B 1 1
OB+sup-V|— | =sBp-V g +—A-—=]B. (1.90b)
s s Rm 52

Further simplification ensues if we writé = x/s, B = ¢s, U = Qs. Then we
obtain the alternative system

ox 20
E+UP‘VX—77<A—E%)X> (1.91a)
oy

— 4+up-VyYy=Bp-VQ+1n A+22 U, (1.91b)
ot s 0s
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with (A — (2/s)9/0s)x = v = 0in“D andy ~ O(]x|™!) as|x| — oo. ltis
notable that the toroidal field does not appear in the equdtoy. The analysis
now proceeds in a similar manner to that for the toroidal tkeo We form the
poloidal “energy equation”

1d ) 20

-2 dx — A—Z2 ) yvdx = — 2dx < 2dx .

2t X ?7/D< sas>XX n !VXI X 7705/ be
(1.92)

It is then clear thag? — 0, and so by arguments used in the previous subsection,
eventually the poloidal field will decay also. Whenis negligible, we can form a
similar relation for) and show similarly that

20
Ppidx =1 <A+——>wdx
s f, v [ (8435 oy

= ( /D Vp[2dx + 2m / awm,z)?dz) ,

and soy? — 0 also. We can prove very similar results for fields (and so f)divat
are independent of.

There are other types of proofs of Cowling’s theorem, whibtwaus to generalise
the problem to permif to depend on position. They show the impossibility of the
maintenance of a steady magnetic field against Ohmic decaw tiiere is a neutral
curve on which the meridional field vanishes at an O-type naépbint. Suppose
that this is atX, and consider a small meridional circte centred aiX, boundary
Ce, radiusz, with Bz = (27¢)~ 560 |Bp|dx,

(mDax |u|) Bz Se > / (up x Bp) -dx = / n(x)V x Bp - dx ~ 2meBen(X) .
Se

S,
c (1.94)
This leads to a contradiction & ~ £2. The neutral ring argument, while in some
sense more general than the Braginsky proof in that the fieéd shot have to be
exactly axisymmetric, is more limited in other ways, sirtoetesult of the proof is to
rule out steady fields (for steady flows) and so has nothingyabout exponential
decay. Fuller details are given in Moffatt (1978) and Festral. (1988).

When the flow is not incompressible useful results are hawl#nd. The equation
for x is still correct. Sincex(0,z) = 0 andy — 0 as|x| — oo, there must exist
a positive maximum ofy, at X(¢) whereVyx = 0, Ay < 0. This rules out a
growing dynamo with a poloidal field. Hide & Palmer (1982) baargued that if
Ax(X) = 0 for all time theny becomes non-differentiable nedrand soB, — O.
The arguments used are appealing but are hard to rigorias. fdve been criticized
by Ivers & James (1984). These authors have used maximugigdgasa to show that
both poloidal and toroidal fields decay exponentially, ling bounds for the decay
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rates so far found are not useful, in that the associated/dewas are much longer
than that of any astrophysical body. The question of how fpraperly selected
compressible flow in a sphere can reduce the Ohmic decayorade faxisymmetric
field remains partially open.

1.4. STEADY AND TIME -DEPENDENT VELOCITIES

In this short section, we discuss the differences betweenlynamo properties of
steady and time-dependent flow fields. This is necessaryubecs much of our
intuition on the efficacy of dynamo action is based on thigkabout steady flows,
and these can be misleading in the general case.

1.4.1. TwO SIMPLE EXAMPLES

Smooth, steady flowa are not usually efficient as dynamos at laRy@, because
there is not enough stretching. In particular, smooth amisgetric or 2D flows can-
not be fast dynamos if they are steady, since there is thexpumential stretching of
material lines (the relation between stretching propeuighe flow and growth rates
at largeRm has been discussed earlier, and will be treated in much nedeal ¢h
the following). On the other hand time-dependent flows candng efficient as dy-
namos, even if they have a very simple Eulerian form. As amgia consider two
related flows, the so-called [G.O.] Roberts (Roberts, 1@r@) Galloway—Proctor
(GP) (Galloway & Proctor, 1992) flows

Roberts flow: u(z,y) oV x (¢(z,y)e.) + ¢ (z,y)e.,

1 =sinxsiny; (1.95)
GP-flow: u(z,y,t) < V x (¢(z,y.t) ;) + 70 (z,y,1) ez,
1 = sin(y + e sinwt) + cos(x + e coswt) . (1.96)

The Roberts flow has three components, but depends only @md y. It has a
fixed cellular pattern; there is no stretching except at thié aorners. The GP-
flow has a very similar cellular structure in the Eulerian float the cellular pat-
tern rotates. The consequences for the stretching prepeate profound; there is
stretching (positive Liapunov exponent) almost everywh@ee Figure 1.5). We
can find dynamo action for both these flows by looking for fiefishe formB =

Re {ﬁ(x, v, t)e“”}. Then the growthrate (for the GP-flow the average growthrate

over one time period of the flow) dependslém andk.

+

+



+
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Figure 1.5- Chaos in the GP-flow. (a) finite-time Liapunov exponentsefaCatta-
neoet al. 1996) forw = 1, ¢ = 1, showing there is exponential stretching almost
everywhere. (b) normal fiel&, (courtesy of F. Cattaneo). Note the large regions of
multiply folded field. See color insert)

For the Roberts flow the optimum growthrate occurs at largeemambet & for
Rm > 1, and in factk ~ (Rm'/?/In Rm). As Rm — oo the optimum growthrate
is~ O(In(InRm)/In Rm), see Figure 1.6. So this flow is not (quite) a fast dynamo.

The GP-flow is completely different. The growthrate@$1) for large Rm, and
the optimum wavenumber alsO(1). Here the flow is chaotic, and though there
are thin flux structures, chaotic regions near the stagmgiints do not scale with
Rm. The choice oft for optimum growth is presumably related to the widths of
these structures. Time dependent flows of this type haveedraertile ground for
extensive numerical simulation of fast dynamo properties.

1.4.2. RJLSED FLOWS

Another important aspect of time-dependent flows is thatymastrictions that
would prevent dynamo action for the instantaneous flow fieldat apply when the
flow is time dependent. This is associated with the non-nbiynaf the induction

equation, as discussed above. As a particular example we Istv the Toroidal
and Zeldovich theorems can be got round for time-dependentsfl Consider the

2 The scalek~!, though small compared to the cell size, is long compareti¢cthin boundary
layer scaldRm /2 for field near stagnation points.
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Figure 1.6- Growth rates for the Roberts and GP flows, as function@mofandk.

Top figure shows the Roberts flow, with peak growthrates @estng at largeRm,

and the criticalk increasing. Bottom figure shows the same data for the GP flow
with e = w = 1. Note the convergence of the growthrate and critical wardyer

for largeRm.
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pulsed Beltrami floSoward, 1993).

_ { (0,sinz,cosz) (0<t<T) (1.97)

(siny,0,cosy) (7 <t<27), etc.

This is a planar flow at all but isolated discrete times, butrdpeach intervar- we
can have transient growth, and this can lead to dynamo acflioa development is
most easily seen when we sget= 0 (for smally the results are almost the same as
long asr is not too large). In the intervdd < ¢ < 7) consider the horizontally

averaged fiel® = Re {]§H exp(ikz)} , then

Bu(r) = Jo(k7)By(0) — it Jy(k7)B.(0) e, , (1.98)

which can be large for large. If we add (small) diffusion, we still get growth,
providedr is much less than the diffusion time. Then the second pulseefald
and stretch the field and give further enhancement. A moreptoated version of
this kind of flow is one that arises in thermal convection, mtbere is a homoclinic
connection between two different planar flows. In this chsdlow is not a dynamo,
because the interval between switching of the flows tendsfinity. The addition
of noise to the system, however, will render the switchintgtfinite and can induce
instability. For further details see Gegal (1999).
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Figure 1.7 - The cyclonic event mechanism as envisaged by Parker (fteerts,
1994). The uniform field in (a) is pulled up in (b), twisted @) (and then reconnects
to form a field loop with a normal component (and so EMF) aatigtlel to the
original field (d).

1.5. TWO-SCALE DYNAMOS

1.5.1. THE TWO—-SCALE CONCEPT AND PARKER’S MODEL

The dynamo flows we have already met: Roberts, GP and pulsed #od exten-
sions to 3D flows such as the ABC model (see section 1.6, arldréss & Gilbert
1995) are small scale dynamos. The magnetic field has saaigsacable to that of
u. But if B exists on two distinct scales then dynamo action can beyeasiified.
Perhaps the simplest model is that of Parker (1955). Suppasesmall scale “cy-
clonic events” act on a uniform field. If the velocity of thesmall-scale motions
has non-zerdelicity, i.e. u - V x u # 0, then the field is twisted by the motion
as in Figure 1.7. By Ampere’s Law (1.3) there is generate& sl parallel to the
original field. The sign of this EMF is opposite to the heljdibr short-lived events.
However for longer lived events there is not in general arghstlear correlation.
If these helical motions are distributed isotropicallyrifey EMF perpendicular to
the field will cancel out when an average is taken over all ssveWhen this new
EMF is incorporated, we get an extra teWhx aB on the rhs of (1.14); this new
term is called thex—effect. An extended discussion including nonlinear affes
given in Section 2.7 and Chapter 6.

Parker's model of the solar magnetic field supposes thataige Iscale field is ax-
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iIsymmetric. The crucialdle of thea—effect is to sustain poloidal from toroidal field.
The same mechanism is also capable of sustaining torowial ioloidal field, but
is ignored in his model in favour of the much more effectiée of zonal shears.
We then obtain the model system

atA—‘—lup'V(SA):OCB“‘L(A_l>A> (1.99a)
S

Rm 52
B
0tB+suP-V (;) = [V X (OéV X Bp)]

+3Bp-v<g)+i<A—i)B. (1.99b)

s Rm 52
We discuss solutions of this equation below when we havesld@k a more system-
atic derivation.

1.5.2. MEeAN FIELD ELECTRODYNAMICS

We now suppose formally that the magnetic and velocity fiekdst on a small scale

¢ and a large scalg, and/or on short and long time scales. We may then define some
average over the short scales (denoted-byand writeB = B + B/, u = u + u/,

etc. Then, taking the average,

OB=VxE+Vx(@xB)—-V x(nV xB), (1.100)

where€ = u’ x B'.
In order to calculat&€ we need to find3’, whose equation is

OB =V x (uxB)+V x (u xB) (1.101)
+Vx(UuxB —uxB)-Vx(nVxB). (1.102)

This equation can only be solved in special cases but we c&e s@me general
remarks about the nature &t Clearly, for fixedu’, B’ depends linearly o8 and
so& is a linear functional oB. Assuming the simplest possible local relation, we
obtain the expression

«;; Is a pseudo-tensor; the symmetric part is non-zero onlyeiftatistics ofi lack
mirror-symmetry. The anti-symmetric part, on the otherdyaacts like a velocity
and because of this it can only be non-zero if the statistick homogeneity, or if
there is anisotropy combined with broken reflection symyndfrwe suppose that
the statistics ofi’ are isotropic but not mirror-symmetric, thes, = «J;;.
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We can relate the pseudo-scatato the helicity of the small-scale flow. Both arise
from broken mirror-symmetry, and we can give explicit riglas in limiting cases.

We can similarly simplify the second term in the expansiaréfgfor in the isotropic
casel;r = Beijk, Which can be identified as a “turbulent magnetic diffugiit

All the foregoing assumes th&®' owes its existence entirely 8. In this case, in
particular, the value of can be determined simply by makifguniform, in which
casef; is exactlya;;B;. However, as we have already seen, wifen is large
enough there is a possibility, indeed a likelihood that alsetale field can exist
even wherB = 0. It is hard to see how to interpret the-effect in this situation
since any “mean-field” effect has to exist on top of an alreaqyilibrated small-
scale field. The problem is then intrinsically nonlinear aondoeyond the scope of
this section, though it will be considered in the next chapte

Supposing that indeefl owes its existence tB, we can see that the—effect can
lead to dynamo action. Consider (writing+ 5 = 1)

OB =V x (aB) -V x (nV x B). (1.104)

If «, 3 are uniform, we get solutions of foriRe {]§ exp(ik - x +pt)}, with (p +

n'k?)? = a2k?, sop, > 0 for all sufficiently smallk. It can thus be seen that mean-
field dynamo action is inevitable on all sufficiently largess, provided only that

a # 0.
The o tensor will take more general forms with lower symmetry oflstatistics.

In a sphere, when there are two preferred directions, nathelyotation(2 and the
radial vectorr, we will get the more general form

E=01(2-1)B+apr(2:-B) +a3;Q(r-B) + ... (1.105)

Note that both rotation and a preferred direction would seegessary for an—
effect.

A detailed discussion of possible forms&fin various cases is given by Krause &
Radler (1980).

As explained above itis hard to calculatéen the general case. There are two special
cases in which analytical progress can be made:

(a) If Rm, based on the small length scdles very small, then there is no small-
scale dynamo. We calculateby approximating the equation f@&’ by

0=DB-Vu +17AB, (1.106)

with B uniform. If we consider, as an example, in the simple Fourier formx
Re {e**} then we haveB; = iB;k;u;/nk* so

Ei= oy B =iep ki urul B /nk?. (1.107)
i b Pq j

J 7p 7q
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If we choose coordinates in whidh = (0,0, %) then&; = «;;B; whereq;; =
adizdiz andank? = —e ik ulu. The latter quantity is just the helicity, and so as
predicted from Parker’s ansatz we see thdtas the opposite sign to the helicity.
Adding together many modes of this type, we can reprodudee to any velocity
field.

(b) The “short-sudden” approximation. This is used whendhmll-scaleRm is
large, and thus is harder to justify. In general the fluctuatingdfigl will be much
larger than the mean field, and so extra assumptions have rtwade to simplify
the equations. We suppose that the fluctuating velocity,feeld so the fluctuating
magnetic field, becomes decorrelated on a tignghort enough that the correlated
part of B’ is again small compared B. We ignore diffusion. Thef,B’ ~ B-Vu'.
This can be solved to givB, ~ 7.B - V', so in the isotropic case

TC

a=-—7 u -V xu. (1.108)

Again we see that is anticorrelated with helicity.
The approximations involved in both these limits esselgtighore the self-interaction

of u’ andB’ in the B’ equation. The equation becomes intractable when these term

are not ignored, and so apart from these extreme cases itdsdgive useful re-
sults. However there is one result available without apipnakxion in Gruzinov &
Diamond (1994). If we suppose the fields and flow statisticstibady with uniform
imposed fieldB (and periodic boundary conditions for simplicity), andingsthe
vector potential introduced in (1.16), wri® = V x A’ we then have

HA = -Vd+uxB +u xB (1.109)
LU XxB W xB -V xB, (1.110)

so (ignoring boundary terms that arise from integration astg)

0=1(B-3A +A-9B)=-B-£ 1B -V xB'. (1.111)

This holds without approximation if boundary terms are igrtb Thus in the isotropic
case o
aBJ? = —g B -V xDB. (1.112)

This result gives some guidance about the behaviour a the small-scal&m
increases. In particular, it shows that diffusion must letuided in any proper model
of a. If v is independent of at largeRm, leading to a fast mean field dynamo, and
we posit thatB'| ~ 7%|B|, |V x B’| ~ n~'/2|B’|, and is intermittent with a filling
factor ~ 7’, then2a + b = —1/2. Possible solutions include= 1/2, a = —1/2
giving sheet-like fields, while if the fields are primarilyoies rather than sheets we
might expectt = —1, sob = 3/2.

+
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1.5.3. MEeEAN FIELD MODELS

If the a—effect is accepted as a model of the effects of small-scatesfbon the
large scale field, then Cowling’s theorem does not applyesimow toroidal field
can sustain poloidal field, and so we can investigate axisgtmemodels. Physical
considerations (thedle of the Coriolis force in inducing helicity) suggest that in
a rotating body such as the Earth or the Suis odd about the equator. Similar
considerations suggest that the zonal flowshould be even, so we can get two
types of field structure: (i) Dipole: wheu® is odd about the equator, arddis even.

(i) Quadrupole;A is odd, B is even. Examples of fields of the two types are shown
in Figure 1.9.

Most models are one of two types: (i}*’, with U neglected. This has been used to
model stationary e.g. planetary dynamos; (i)J” in which the o term in (1.99b)

is neglected, as in the Parker modet. models typically give steady dynamos (real
growthrates) whilexw models usually give cyclic dynamos (complex growthrates).
We can understand the latter in terms of dynamo waves. Weantas@an geometry;
let

A=A(z,t), B=DB(zt), B, VU~wdA, (1.113a,b,c)

wherez is a variable corresponding to latitude (the term (1.118cgferred to as the
w—effect). Substituting into (1.99), and modelling radiatidatives with a constant
damping term, we obtain the simplified system (compare toakou (6.1a,b) in

Chapter 6).

(A= aB+n(0A—K*A), 0,B=wd,A+n(d,.B—K*B) . (1.114ab)
This has travelling wave solutions with, B « exp [ik(xz — ct)] when
aw = 2 (k* + K*)?/k, c=—aw/[2n(k* + K?)]. (1.115)

Note that the modulus of the dynamo numkler= aw/n? K3 takes a minimum
value16/3v/3 whenk = K/+/3. Note the definite sign of the wave speedhich
depends on the sign @b.

In a spherical geometrygw models can be used to give models of the solar cycle
(butterfly diagram) by identifying larg® with regions of sunspot eruption. Forms
of a, U and any meridional velocity are prescribed, and the egusisolved numer-
ically as an eigenvalue problem to obtain marginal (pedadilutions). A particu-
larly comprehensive study was carried out by Roberts (19%2)le these kinematic
studies are now overshadowed by the dynamical studiestegpon later, it is in-
teresting to note that travelling waves of activity, simila the Parker waves, can
be seen propagating latitudinally. The direction of praemn depends on the sign
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1972).

Figure 1.9- As above, but quadrupolar solutions.
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Figure 1.10- Real and imaginary parts of the growth rate for typieals dynamos
(from Roberts, 1972). Unstable regions are shaded. aHeis is reversed in
the lower figure. Note the similarity between the figures, wgyssted in Proctor
(1977b).

of the dynamo number, and since on the Sun the waves moveds\ze equator
we can make some deductions about the dynamics leadingTbe associated fre-
guency of oscillation also emerges from the calculationiarmbmparable with the
turbulent diffusion time.

There is an interesting near symmetry, associated withdjoénd dynamo problem,
between dipole (quadrupole) modes withu, and quadrupole (dipole) modes with
«, —u (Proctor, 1977b). This is illustrated in Figure 1.10, whigmows growth
rates for a particular dynamo model. The figures for the diffie parities are very
similar, though ther—axis, measuring the dynamo number is reversed in the right-
hand figure.

We can relate these results to the well known butterfly diago&the solar cycle
(shown in Figure 6.3, page 290 and discussed in Section & ye identify the
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sites of sunspot activity with maxima &f, (since we believe that sunspots are man-
ifestations of large toroidal fields through the magnetioyancy instability), then
the equatorward propagation of the disturbances will leadgicture like the obser-
vations.

These global models of dynamo action have been superseaeddsis in which the
shear is concentrated just below the convective zone ofuhgasd so the—effect
is separated spatially from the shear. This “interface rtidéarker, 1993), which
also leads to dynamo waves, will be discussed in detail abitly its dynamical
consequences in Chapter 6.

1.6. LARGE MAGNETIC REYNOLDS NUMBERS

Let us now turn to the evolution of magnetic fields under thdugtion equation
at large magnetic Reynolds number, as explained in Sectia.1We will begin
by giving a formal definition, before discussing the moiivatfor such studies and
presenting various examples. For further information awodemeferences than can
easily be provided here see the reviews Childress (1993)lyB4994), Soward
(1994), Childress & Gilbert (1995) and Gilbert (2003).

Suppose we have a given incompressible flowith a typical length scal€ and ve-
locity scaleUU, and the magnetic diffusivity ig. Then after non-dimensionalisation
using these scales, the induction equation (1.14) becomes

OB+u-VB=B-Vu+:cAB, (1.116a)
wheree™! = Rm = UL/n is the magnetic Reynolds number, and

V.-B=0, V-u=0. (1.116b,c)

For a given flowmu and ans > 0, dynamo action may take place, the fastest grow-
ing magnetic field mode having an exponential growth rdtg; for example for a
steady flow

B(x,t) o< b(x)e™, 7=Re{o} . (1.117)
The flowu is afast dynamaf the fast dynamo exponent
Yo = liH(l) ~(g) (1.118)

IS positive; otherwise it is alow dynamoFor a fast dynamo, magnetic field growth
occurs on the turnover time-scale of the underlying fiolon which we first non-
dimensionalised), independently of molecular diffusigaslow dynamo operates
on a slower, diffusion-limited time-scale, as we shall seedme examples below.
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Why study fast dynamos? Before answering this questios, biest to widen the
scope of our enquiry: our interest is in dynamo mechanisast énd slow) at large
Rm, the structure of magnetic fields, and the saturation of ohoanstabilities (in
which case (1.116a) must be supplemented by an equatian féathematically,
the limit Rm — oo or e — 0in (1.116a) is a singular limit as multiplies the
highest derivative, and so this requires careful treatrbgmtumerical codes, or by
asymptotic means. Taking this limit allows a clear subdisof dynamos and
unstable magnetic modes into different families, as wel sieal. This classification
can be useful even iRm is not particularly large in an application; however in
many astrophysical applicatiosn is very large, and dynamo processes do appear
to operate on fast time-scales; for example in the Bunis of the order ofl0® and
the magnetic field oscillates on the fast, 11-year Solarecycl

Finally, developing mathematical tools to cope with fasta@yos is a considerable
challenge with wider application, for example to vorticagd passive scalar trans-
port in complex flows (e.g., Reyl, Antonsen & Ott, 1998; Fexgelt al. 2002). The
induction equation (1.116a) is challenging because thebetrs as: — 0 and
for e = 0 are markedly different at large times. If one simply sets 0, then the
induction equation corresponds to advecting a vector felic the given flowu,
field lines being frozen in the fluid. The field will gain finercafiner scales, and the
magnetic energy will grow because of field stretching. Bseaaf this reduction of
scale, there are no well-behaved eigenfunctions for a géflew in the case = 0
(Moffatt & Proctor, 1985). Now suppose diffusion is intrashd: this can have very
dramatic effects because of the fine scales in the field. Fomple for a typical pla-
nar flowu(x,y,t) = (u1,uz,0), the magnetic energy grows indefinitely foe= 0,
but for anys > 0 it eventually decays, in keeping with the anti-dynamo tleeofor
planar flows discussed in Section 1.3.4.

In this short review we will consider examples of slow and fhsmamos in flows
and mappings, but only make passing reference to issuesiahtysaturation; these
will be taken up in Chapter 2.

1.6.1. 30w DYNAMOS IN FLOWS

Perhaps the simplest example of a slow dynamo is the Ponakadynamo (e.g.,
Ponomarenko, 1973; Gilbert, 1988; Ruzmaikin, Sokoloff &ulslrov, 1988). In
cylindrical polar coordinateg-, 0, z),

u=rQ(r)eg+U(r)e,; (1.119)

this is a swirling helical flow, depending only on radiudHere we focus on the case
of a smooth flow, although Ponomarenko’s original paper hadegwise constarit
and(). Related flows were studied by Lortz (1968).

+
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Figure 1.11 - Magnetic field in the Ponomarenko dynamo at large magnetic
Reynolds numbeRm = ! forms spiralling tubes of field localised near the reso-
nant stream surface.
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We may consider a magnetic moe= b(r) exp [im# + ikz + ot], classified by
wavenumbersn andk. In this case the induction equation (1.116a) foandb,
becomes

[0 +imQ(r)+ikU(r)] b =€ [(Ap —r7?) b, — 2imr—2by] , (1.120a)
[0 +imQ(r)+ikU(r)] bp=r(r)b 4+ [(Am — 1) bg +2imr~%b,] .
(1.120b)

We can drop thé, equation a$. can be reconstructed from the condit®hB = 0.
The basic mechanism can be seen in these two equations, arukadescribed
as of aw-type. The stretching of radial field by the gradient of aagutelocity
(Y (r) generate$, field in equation (1.120b) (an—effect), while diffusion ob, field
in curved geometry can generate radial field by the last terfi.ii20a) (broadly
speaking, am—effect).

To obtain formulae for growth rates at smallve rescale, so as to capture the fastest
growing modes, setting

m=ec M, k=e'3K, r=a+¢e"s. (1.121a,b,c)

Here we are seeking a mode localised at a radig&hose significance we will
discover shortly) in the interior of the fluid. We scale thewth rate as

oc=cPog+o+Poy+ -, (1.122)
and for the field, set
by =bg(s) +---,  bp=bgo(s)+---, (1.123a,b)

These expansions are then to be substituted into (1.128adkhe flow field (1.119)
also Taylor-expanded about= a in powers ofs. When this is done, corresponding
powers ofs are equated, to give at the leading two orders:

oo +iMQa)+iKU(a) =0, (1.1244a)
iMQ(a)+1KU' (a) =0, o1=0. (1.124b,c)

The first simply fixesr, as purely imaginary, advection of the magnetic field mode
by the flow at radius. The second condition implies that a mode with given k)
tends to localise at the radiuswhere the shear of the flow is aligned with field
lines, assuming such a radius exists; if it does not, then axe erpect the mode to
localise at a boundary.

At the next order we obtain from (1.120) coupled parabolitncer equations,
which may be written in the form

(co+icys® —0?) by =—21Ma by, (1.125a)
(co+icys® —0?)bgy = a(a) by, (1.125b)
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wherecy = 09 + M?/a? + K? and2c, = MQ"(a) + KU"(a). These coupled
differential equations can be rewritten as

PJrberO - 0, (1126a)

with
Pi=(coxd+ics®—09%), d=(-2iMQ(a)/a)?. (1.126b,c)

The parabolic cylinder operatofs. andP_ commute and so the solution fby, is
a linear combination of solutions to the two equatiéhs,, = 0. Putting these into
canonical form gives

(02— (307 +c2)] bo =0, (1.127)

with o= s(dicy)4, cr = (co£d)/(4icy)'?, (1.128a,b)

and solutions that decay fer— +oc existonly ifc. = —j — % forj =0,1,2,....
This gives eigenvalues of the original dynamo problem.

Finally returning to the original variables gives leadinger growth rates,

v =Reo ~ Fy/e[mQ(a)|/a — (j + 3)V/elmQ(a) + kU"(a) — e(m?/a® + k?) .

(1.129)
This formula was derived fan, k = O(s~1/?), but is in fact valid for albn, k. The
fastest growing modes have scatesk = O(c~'/3) andy = O(¢'/?), and so this
provides a slow dynamo. The resulting magnetic fields hairalépg tubes along
which the field is approximately directed; for examplepar= 2 mode is illustrated
schematically in Figure 1.11.

An important feature of the formula (1.129) is that the fivgb tterms scale in pre-
cisely the same way with: (andk) ande, while the last term can always be made
subdominant at smadl by takingm (and%) small enough. Taking the upper sign,
andj = 0, for a dynamo to occur at largém for some modém, k) it follows that
the first, positive term must dominate the second, negatina,tand this only oc-
curs at the given resonant surface- a provided the purely geometrical condition,
obtained with the help of (1.124a),

‘QN(T) vy (1.130)

") T T

is met there. One can write down flows for which this is nots$itil, and so which
would not be dynamos at largem, even though they appear well-endowed with
helical streamlines.

This example can be generalised away from strictly circgésmetry to allow more
general stream surfaces (Gilbert & Ponty, 2000). As an elawipan application,
the resulting theory gives excellent predictions of theahsity threshold for these

+
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Ponomarenko modes in a study (Plunian, Marty & Alemany,9)28 dynamo in-
stabilities in model nuclear reactor flows, even at modeRate Such modes can
also occur in convective cellular flows (e.g., Ponty, GitberSoward, 2001). A
smooth flow of the form (1.119) can give slow dynamo action,ibb2(r) andU ()
have discontinuities at some radius= a, then fast dynamo action can occur, with
growth ratesy = O(1) for modes withm, k = O(c~'/2) (Gilbert, 1988); we will not
discuss this further here. Some aspects of the saturatemadth Ponomarenko dy-
namos are studied in Bassom & Gilbert (1997)Rar > Rm > 1: the flow adopts
a layered structure, with solid body rotation in a broadaagiurrounding the radius
a and where thev—effect and field are concentrated. Outside are thin lay@esev
the shear and—effect are significant.

These Ponomarenko modes, with spiralling tubes of fieldredteng in direction, are
rather localised; for example a mode would sit in one cellodavective flow. They
are far from the mean-field dynamos which are traditionaiygl®d by means of an
a—effect and discussed in Section 1.5. The best laminar flestudy which allows

such large-scale field generation is the Roberts (1970) fidwch was introduced
in Section 1.4,

u = (sinxcosy, — coszsiny, K sinzsiny), K=v2. (1.1314a,b)

This is a Beltrami flow, with vorticityV x u = Ku proportional to the flow itself.
It thus provides a steady solution to the Euler equationjsadnember of the ABC
family of flows; the general ABC flow is given by

u= (Csinz+ Bceosy, Asinz + C cos z, Bsiny + Acosx), (1.132)

where A, B andC are parameters (and (1.131a,b) is obtained by setting B =
2-1/2 ¢ = 0, rescaling and rotating axes throug). At low Rm the Roberts flow
provides am—effect dynamo, destabilising large-scale magnetic fieddles (e.g.,
Moffatt, 1978). The field is dominated by diffusion; the flasva small perturbation
to the field on the scales of the flow, but one which has a lacgéedestabilising
effect. A nonlinear study within this lodlRm model reveals an inverse cascade of
magnetic energy to large scales (Gilbert & Sulem, 1990).

At large Rm, however, the field tends to localise on stream surfaces. flbhe

Is independent ot; there is an array of square helical cells, in which the flow is
spiralling, where dynamos can exist. However the key newufeds the network
of hyperbolic stagnation pointge,y) = (nm, mn), joined by straight-line sepa-
ratrices: new magnetic modes appear, localised on thisonktwA modeB
exp(ik z + o t) with wavenumbetf: in z has growth rate

v =0 =ak—cek?, a=—1ke'?G, G ~ 1.0655. (1.133a,b,c)

(Childress, 1979; Soward, 1987). This is valid for= O(1), but the growth rate
increases withk, and the above equation is suggestive of a maximum growgh rat
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(a)
(d)

(b)

(e)
(©

—

Figure 1.12- The stretch—twist—fold dynamo: an initial flux tube (a)stsetched
(b), twisted (c) and folded (d), to obtain a doubled flux tufe). a folded flux tube
after two STF cycles: note that only the centre line of thestisshown.

v = O(1) for k = O(¢7%/?), that is, a fast dynamo. A delicate analysis (Soward,
1987) shows that the maximum growth rate is in fact given by

7= O((logloge™")/loge™), k=0(E"1%/\/loge1). (1.134a,b)

Is this a fast dynamo? Not technically, as the growth ratiegstes to zero as — 0
and so the dynamo is slow. However the decay is only logargimre, and what is
a logarithm between friends? In view of our opening remamnkifiis chapter, this is
therefore still an interesting and important slow dynamahaaism; for example,
similar Roberts modes are found in the study of Plunian, Y&ralémany (1999).
One important feature to note is that the fastest growingragagfield modes have a
very small lengthscale in. They are extended inandy (unlike the Ponomarenko
modes), but the magnetic energy is entirely at the diffuscaesk ~ O(<~/?). In
the Roberts dynamo diffusion is still playing a cruaiéle in the amplification pro-
cess, and the field has to adopt diffusive scales to benefd.shiould be contrasted
with the fast dynamos below, where the magnetic fields hapiedily a power-law
spread of energy over a range of scales, from the full scatbeoflow down to
diffusive scales.

1.6.2. THE STRETCH—-TWIST—FOLD PICTURE

In so far as finding fast dynamos, the problem with the flowsasdliscussed is that
diffusion is crucially involved in the amplification procesin fact, in rough terms,
these steady flows have dynamos ohantype at largeRm. Field perpendicular to
stream surfaces is stretched out along stream surfaces fipwh giving strong field
parallel to stream surfaces (amn-effect); in curved geometry weak diffusion acts
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Figure 1.13- Cross sections of the torus (a) initially, and (b) after &1d- iteration,
(c) two iterations and (d) three iterations. Shading ingisaegions containing field,
and white is field-free fluid.

on this parallel field to generate perpendicular field aweffect). Thisaw-cycle
allows the field to grow and the dynamo to operate. To avoiddime&amo process
being limited by diffusion as in these examples, it is neagsfor advection by the
fluid flow to do all the amplification itself without relying atiffusion. The simplest
picture of how this may be achieved is in the stretch—tw@t-{(STF) dynamo (see
Section 1.2.3; Vainshtein & Zeldovich, 1972), depicted igufe 1.12 (see also
Figure 1.2).

In this figure the flow is not given explicitly. Instead theiaatof the flow is shown
on atube of field frozen into the fluid; we may think of the petfgconducting case
e = 0 for the moment. The initial tube (a) is stretched to twicdetsgth, its cross
section being halved, giving (b). This doubles the fieldrgjth and so multiplies
the energy by four. The field is then twisted into a figure-ghé(c) and folded (d),
to give a tube of similar structure to the original in (a). Hfs process is repeated,
with a time periodI” = 1, then the energy at time = n will be E, = 22",
corresponding to a growth rate= log 2. Now let us reintroduce weak diffusion;
this will begin to play ardle when the field scale becomes of ordéf?, and will
begin to smooth and reconnect the field (Moffatt & Proctor89)9 Because the
action of the STF moves has been to bring tubes of field laig&dyalignment, one
would expect diffusion not to lead to a wholesale destructibfield, but simply to
smooth the fine structure in the field, giving~ log 2 for 0 < ¢ < 1 and so a fast
dynamo withry, ~ log 2.

There are a number of problems with realising the STF pidtupgactice. The first
is that it is not easy to specify a fluid flow to apply the STF nef{doffatt & Proc-
tor, 1985). But even in such a flow (or iterated mapping), takl fiapidly becomes

unmanageable (Vainshteet al., 1996), for the reasons indicated schematically in

Figure 1.13. Starting with a magnetic field (black) in a tomreose cross section
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@

Figure 1.14- Eigenfunctions of Otani’s flow fok = 0.8 and (@) = 5 x 1074
and (b)e = 5 x 107°. The magnitude of the magnetic field is shown, with black
indicating zero field. $ee color insert)

is shown in (a), the doubled up field in (b) will entrain fiele:¢ fluid (white) and

so some field will lie outside the original torus. As the sthettwist, fold opera-

tions are repeated (c,d) the bundle of field lines and ergdaituid will increase in

volume until the whole fluid volume contains strands of figldd it is necessary to
understand the global nature of the fluid flow and folding déifia problem that has
not been addressed. The field lines also become tangled uppmlicated fashion
(see Gilbert, 2002), with poorly-understood implicatidasdiffusion of field.

Nonetheless, the STF moves provide a useful picture of hoastadynamo with
growth ratey, ~ log2 might operate. This is only picture hard to realise in
practice (for example in a convective fluid flow!), but infaitive nonetheless. The
key points to bear in mind are: first, the flow has chaotic plrtrajectories, as the
length of the field lines in the tube doubles with each peribdfact Lagrangian
chaos in a smooth fluid flow is a necessary ingredient for fasaoho action; tech-
nically the topological entropy: of the flow must be positive (Finn & Ott, 1988;
Klapper & Young, 1995), as we discuss further below. Suclotbdlows are easy
to realise; but the second key ingredient in a fast dynamonstcuctive alignment
of magnetic field vectors. The STF moves tend to bring fieldselwith similar
orientation, which minimises the possible destruction@fifthrough magnetic dif-
fusion.

1.6.3. FAST DYNAMOS IN SMOOTH FLOWS

The numerical study of dynamo action in chaotic flows begah wivestigation of
steady ABC flows (1.132) (Galloway & Frisch, 1986). Howeverde are generally
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three-dimensional, having complex stream line topologg solving the induction
equation is computationally intensive. Itis easier to da#i two-dimensional flows
u(z,y,t) (independent ot), and the best-studied examples are essentially variants
of (1.131), for which time dependence is introduced andlte$u a breaking up

of the separatrices joining hyperbolic stagnation poittgjive chaotic layers. One
example is the flow of Otani (1993),

u(x,y,t) = 2cos®t (0,sinz, cos ) + 2sin®¢ (siny, 0, — cosy), (1.135)

which is similar to an example studied by Galloway & Proctt#42) and discussed
in Section 1.4.1. Growing magnetic fields take a Floquet form

B(x,y,z,t) = plkztot b(z,y,t), (1.136)

in which b is periodic in time, perio@r. The z-wave numbek is a parameter and
for each diffusivitye, the mode with maximum growth rate may be found. Numeri-
cal study (Otani, 1993) shows good evidence for fast dynartiorawith

Y ~039, k~08. (1.137a,b)

Note that the value of at which growth rates are maximised does not depend on
¢; the magnetic field has a large-scale component, unlikeerslitw Ponomarenko
and Roberts dynamos discussed above.

However while numerical studies show that the convergefiega to v, is rapid
ase — 0, the magnetic eigenfunctions become more and more cortgadicas in-
dicated in Figure 1.14. This shows a snapshot of magnetiggiiaveraged over)
plotted as a function dfz, y). In the centre are bands of field, resulting from chaotic
stretching and folding in the flow in ther, y)—plane. In the large black, field-free
regions the flow has islands of KAM surfaces with insignificstnetching?

The action of the flow is to fold field in the plane, giving thdtbef field dominat-
ing the centre of the picture. This would not give any kind @hstructive alignment
of field vectors, however, without the shearing motiorjiwhich advects field up
and down, giving changes of sign of field by virtue of th&* dependence og; see
(1.136). By this means bands in the centre of the picture fialds that are largely
aligned. This ‘stretch—fold—shear’ mechanism amplifieargd-scale field compo-
nent, while creating a cascade of fluctuations to small scéhese fluctuations are
smoothed out by diffusion, which plays a relatively passive.

While the above flow of Otani (1993) has been written down auithany obvious
link to real astrophysical fluid flows, the above mechanismstiedtching and folding

3 KAM=Kolmogorov-Arnold-Moser: this refers to regions whketrajectories are not chaotic and
lie on surfaces.
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Figure 1.15- A baker’'s map with uneven stretching, as described in tkig(igure
taken from Gilbert 2006).

A

A

in the (z, y) plane and shearing inis very natural and can occur, for example, in
convection. Two-dimensional time-dependent convectidiess can give chaotic
folding in the plane containing the roll axes, while the iefhge of rotation (natural
in an astrophysical body) can drive flows along their axes(Ktughes & Soward,
1999; Ponty, Gilbert & Soward, 2001).

The flows of Otani (1993) and Galloway & Proctor (1992) hawedleen studied in
dynamical regimes, where the given fluid flow is now driven yr@scribed body
force until the field grows and becomes dynamically invol#ewugh the Lorentz

force. Studies indicate that the field saturates througpr&gsion of the Lagrangian
chaos and alpha effect in the flow, although there is also sewence that an
inverse cascade of magnetic energy to large scales may ocspatially extended
systems, on long time-scales; see for example, MaksymczGhiigert (1998) and

Cattanecet al. (2002).

1.6.4. FAST DYNAMOS IN MAPPINGS

Studying fast dynamo action in flows such as Otani’'s abovandkBC flow, is ex-
tremely difficult. The problem is that it is not just the indiual Lagrangian trajecto-
ries that are important, but how ensembles of trajectoeiad to folding of magnetic
field. Most progress in understanding has been obtainedubyisiy dynamo action
in models for which the fluid flow is replaced by a mapping.

Perhaps the simplest mapping that can be considered isablkest Baker's map
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with uneven stretching (Finn & Ott, 1988): this discontineanap of a square, say
[—1,1]? to itself is depicted in Figure 1.15. The map is defined by a parameter
awith0 < a < 1andwe se = 1 — a. The unit square is cut at a horizontal level
y = —1 + 2« into two pieces. The first is stretched by a faator!, changing its
dimensions in(z, y) coordinates fron? x 2a to 2a x 2; see (b). The second piece
is stretched by a factg#—*!, going from2 x 23 to 23 x 2. Finally the two squares
are reassembled in (c), stacked together, and this corapleemapping process.
This mapping can be thought of as a simplified model for the Si€kre, giving
the doubling up of the tubes of flux in the presence of uneveictting (Finn &
Ott, 1988). The map/ may be written as

_Jlalz+1) ~La Tl (y+1)=1) fory<T;
M(I’y)_{(g(x_1)+1,ﬁ1(y—1)+1) fory > 7T,
with Y = —1+2a=1-20.

We imagine starting with a fiell(x) = b(x) e, and using the Cauchy solution, it
may be checked that the actionf is to replace(x) with the field7'd, where

(1.138)

Th(z) = {ozlb(ozl(x +1)—1) forxz<T; (1.139)

(B —1)+1) forz>T.

T is called the dynamo operator (without diffusion). Ignaoridiffusion for the
present, we may imagine iterating this operator on an Initiat magnetic field
bo(x) = 1, possessing flusb, = 2 through any horizontal ling = constant. Apply-
ing the map once yields two rectangles of field, one of witlthand strengthy—!,
and one of width23, strength3—!: the flux®, = 4 has been doubled. Iterating the
map we see thab,, = 2"*!. If we can ignore the effects of diffusion we have a
dynamo with growth rate, = log 2 as in the STF picture, if we agree that each iter-
ation of the mapping takes unit time. We would expect thectfié weak diffusion

to be unimportant, as the fields that emerge through repegigccation of M/ are

all pointing in the same direction (Finn & Ott, 1990).

The key feature that the stacked Baker’'s map highlightsasttie rate of growth of
flux can be different from the Liapunov exponent, a populaasoee of how chaotic
a system is. To measure this quantity we imagine hgadaected vector attached
to a typical point(z, y) is stretched as the may is iterated. Since on average a
proportiona of the iteratesM™(z, y) will lie in y < T, where the vector will be
stretched by a factax !, and a proportiors in y > Y, with stretching by3~1, the
Liapunov exponent will be

Aliap = aloga™ + Blog 371 (1.140)

This islessthan the fast dynamo growth raig = log 2, except in the special case
a = 3 = 1/2, of even stretching. This at first seems surprising, as magfield

+
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is composed of vectors, and surely bathand Aoy measure the stretching rate of
vectors! In fact there is a difference in the averaging psees involved. In the
case of magnetic field, in computing a flux, we are weightingenin@avily the more
stretched vectors, by integratingr) dz, whereas a Lipaunov exponent involves a
typical point, with weightingdz in the sense of a measure. Equivalently, stronger
magnetic fields tend to concentrate in the regions of higtnetching, and so give a
different weight in the average.

A more useful quantity to measure as a diagnostic in a fasamgnis the rate of
stretchinghiine Of material lines (which could be thought of as field lineshe ab-
sence of diffusion). If the reader experiments with plaangqe, sayr = y in the
squard—1, 1]? (see Figure 1.15), and then iterating the m&mn all the points con-
stituting the line, he or she will soon find that the line ldngpproximately doubles
with each iteration, giving an asymptotic valtige = log 2, which is the same as the
fast dynamo growth ratg,. Like magnetic field, material lines tend to concentrate
in the regions of high stretching (with the consequent iU iap < Aiine).

This then suggests the general result that the fast dynapanerty, should not
exceedhine. In fact in two dimensions the exponéit,. may be identified with the
topological entropy:, and so the result one might expect is

Yo < h; (1.141)

this was argued by Finn & Ott (1988) and proved rigorouslyde@msome natural
smoothness conditions) by Klapper & Young (1995). The fhaat 4, can be less
thanh is easily understood: the Baker's map in (1.138) above giegfect align-
ment of field in the vertical: all vectors point in they direction with our given
initial condition. If instead there is folding of field in a merealistic scenario,
which can be modelled using a Baker’s map with several culisratating one or
more rectangles of field at each iteration, the flyx a signed quantity, will tend to
grow less quickly than the rate of stretching of materiad$in This aspect can also
be characterised by@ncellation exponernDu et al,, 1994). If there are no sign
changes in the field, the cancellation exponent would be, zavd we would have
Yo = h.

While the uneven Baker's map model is an interesting andulisedy to explore
these considerations of uneven stretching and cancelatiosuffers from the fact
that it is derived from the STF picture, which has the shoricgs and problems
mentioned above. Note that far= 3 = 1/2 the Baker's map is trivial (doubling
all field vectors and no cancellations), and so probably towple to model what
occurs in a typical fluid flow!
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Figure 1.16 - The stretch—fold—shear map. (a) Magnetic field dependmg
stretched and folded with a Baker's map in they)—plane to give (b). In (c) the
field orientation is shown in thér, z)—plane, which after the shear operation gives
(d) (figure taken from Gilbert, 2002).
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1.6.5. THE STRETCH—FOLD-SHEAR MODEL

Another idealised model that does capture some of the aogildn mechanism
seen in Otani’s (1993) flow and similar flows, is the stretotd+shear (SFS) model

of Bayly & Childress (1988, 1989). This model consists of entver of components.
The first is a folded Baker’'s map (with uniform stretchinghieh maps the square
—1 < z,y < 1toitself, by stretching and folding. This is like the prosepicted

in Figure 1.15 withw = 3 = 1/2, except that the second rectangle is rotated through
m before reassembly, representing the folding of a sheetldf fldne map is defined

by

le—-1),14+2 f ;
My, ) = § (207 7D L+ 2,2) fory <0; (1.142)
(3(1—x),1—2y,2) fory>0.
The action of this on a magnetic field
B(z,y, z) = €**b(z) e, + complex conjugate (1.143)

is shown in Figure 1.16(a,b), giving one fold of field in the y)—plane. If this map
were now simply repeated, the effect would be to obtain ewer falternating bands
of magnetic field in this plane, vulnerable to diffusion. Tdés plenty of stretching,
but no constructive folding. The flux through a lime= constant would become
zero after one iteration and remain so thereafter. In thse a@e would havey,
negative, butyi,e = log 2.

Thus a second ingredient is required, a shear intteection, shown in a top-down
view going from (c) to (d). The action of the shear is to brirmyvard pointing field
(+) approximately into alignment with other upward fields, andilarly downward
pointing field (). This corresponds to the mapping

MQ(xaya Z) = (:I:,y,z—l—oe:l:), (1144)

where« is a shear parameter (not related to the previeusand not intended to
imply an a—effect!). The alignment is only approximate, but intendectapture

the basic mechanism observed in flows such as Otani’s, inhwbedts of field are
drawn out and folded in ther, y)—plane, and then sheared in théirection (Bayly

& Childress, 1988).

In this way we obtain the SFS dynamo model: the field is firgtskred and folded
(by M) and then sheared (by/;). Acting on the complex field(x) in (1.143)
above gives a field'd, with

—iakz .
To(z) = {2e b(1+2z) forz<o0; (1.145)

| =2tk Ep(1 —22) forz > 0.
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T is again the dynamo operator without diffusion. For diftuswe employ suitable
boundary conditions and allow the fielglz) to diffuse for unit time according to
ob = €0,,.b. Possible boundary conditions (only employedrat —1,1) include
insulating (1), perfectly conducting (C) and periodic (P),

b(l)=b(-1)=0 (1), 9.b(1)=0.0(—1)=0 (C), b(x)periodic (P)
(1.146a,b,c)
The diffusion step may be written as mapping H.b, whereH. is another operator
involving heat kernels (for further details see Gilbert)202004).

Finally the SFS dynamo operator with diffusion is writtEn= H.7T. The magnetic
field is most easily discretised using Fourier series, agdrealues\ for 7.6 = \b
sought numerically using matrix eigenvalue solvers. If tingpping and diffusion
are assumed to take a time unity, then the correspondingetiagmowth rate is

o =log\, (1.147)

and we refer to\ as the growth factor. An eigenvalughen corresponds to a grow-
ing magnetic mode provided thgt| > 1. Our aim is to understand the properties
of eigenvalues off. in the limit ase — 0. If eigenvalues remain bounded above
|A| = 1 in the limit, then the SFS model is a fast dynamo.

Figure 1.17(a,b,c) shows the modulus$ of the leading eigenvaluesas a function

of a (with £ = 1 set without loss of generality) for the (1), (C) and (P) boand
conditions given above, at = 107°. We see that it is necessary in all cases to
increase the shear parameteabove aboutr/2 to obtain growing modes. There
has to be sufficient constructive alignment for the dynamapierate.

We also see that the modes with the larger valugs|ptertainly|\| > 1, are robust
to the kinds of boundary condition employed, though theupecis rather different
for marginal and decaying modes with| < 1. Further numerical study (not set
out here) indicates that the more robust eigenvalues, Wjth- 1, appear to show
convergence to positive valuesas- 0, although individual magnetic modéér)
show increasingly fine structure in this limit. Thus therg@od evidence for fast
dynamo action in the SFS model (Bayly & Childress, 1988, 1989

This leaves open the mathematical question: how can we pasveynamo action,
and obtain some information about these growth rates foll gositive diffusivity,

0 < e < 17? We need to set out a sensible problem for zero diffusionftfeemtreat
diffusion as a perturbation. The key idea of Bayly & Childr€$989) is to note that
while the (diffusionless) operatdr tends to reduce the scales of a magnetic field
and generally has no eigenfunctions, its adjd@intin L?), given by

T c(z) = e tea @ (Az—-1)) - eteal-a), (t1-1m), (1.148)

instead tends to expand scale and averdgecan possess smooth eigenfunctions
even at zero diffusion, unliké'
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Figure 1.17- Moduli of eigenvalues\| plotted againstv for the SFS model. The
boundary conditions are (a) insulating, (b) perfectly agtiohg and (c) periodic,
with e = 1075, In (d) eigenvalues are obtained using a power series and.
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If we seek an eigenfunctiofi“c = Ac¢, and expand the functios(x) in a basisz",
that is as a power series about the origin, we obtain a matriX'f whose eigen-
values may be found numerically. Figure 1.17(d) gives ghofaictors obtained
in this way for zero diffusion. The results are very closehose obtained in Fig-
ure 1.17(a,b,c) in the presence of weak diffusion, paididyfor larger values of\|.
Plainly most branches in Figure 1.17(d) are relatively saiboi diffusion, though this
depends on boundary conditions and the sizg [of

One branch that shows particular sensitivity to diffusiad @oundary conditions is
the horizontal branch in 1.17(d), for which the adjoint eifymction of (1.148) is
given analytically by

c(x) = et _elal=0) — 9 gina(z — 1), \=el2. (1.149a,b)

This branch only survives for conducting boundary condsgio Current research
(Gilbert, 2004) is aimed at understanding the effects dgtidibn and boundary con-
ditions in the SFS model. The aim is to be able to use pertiorb#teory to write,
for a given branch and value of

A(e) = A\(0) + Ce?, (1.150)

where\(0) is the complex growth factor obtained by means of a poweesdar
zero diffusion, as shown in Figure 1.17(d). The teriaf is the diffusive correction,
which is dependent on the structure of the mode and boundaditons, and; > 0
is the condition on the exponesqfor the branch to survive the effects of diffusion.
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