
CHAPTER 1

I NTRODUCTION TO SELF -EXCITED

DYNAMO ACTION

Benôıt Desjardins, Emmanuel Dormy
Andrew Gilbert & Michael Proctor.

The theory of self-excited dynamo action discussed throughout this volume was
first suggested by Sir Joseph Larmor in 1919 to account for themagnetic field of
sunspots. It was later formalised mathematically by WalterElsasser (1946). The
objective of this first chapter is to introduce the subject and provide the necessary
background for the later developments. We derive the relevant equations and discuss
the usual approximations in Section 1.1. The concept of a homogeneous self-excited
dynamo is introduced in Section 1.2. The existing theoretical results and neces-
sary conditions for dynamo action are then presented Section 1.3, and the essential
distinction between steady and time-dependent velocitiesis made in Section 1.4.
We then introduce mean field electromagnetism (a continuingtheme throughout the
book) in Section 1.4 and the difficult large magnetic Reynolds number limit (relevant
to astrophysical problems) in Section 1.6.

1.1. GOVERNING EQUATIONS

1.1.1. MAGNETIC INDUCTION

The common aspect among all natural objects described in this volume is their abil-
ity to maintain their own magnetic field. This is described bythe induction equation
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which we shall derive now.

We will deal with a variety of conducting fluids ranging from molten iron in the
Earth’s core to ionized gas in stars and galaxies. Yet the magnetic field in these
objects is usually well defined by the so called induction equation.

I NDUCTION EQUATION

Let us first recall Maxwell’s equations

∇ × E = −∂tB , ∇ × B = µ j + ε µ ∂tE , (1.1a,b)

∇ ·B = 0 , ∇ · E = ρc/ε , (1.1c,d)

where the following notation∂t · ≡ ∂ ·/∂t has been used.B is the magnetic in-
duction (sometimes refered to as the magnetic field),E is the electric field,j is the
electric current density,ρc is the charge density,µ is the magnetic permeability,ε
the dielectric constant. In the following we will assume thefree-space value for the
magnetic permeabilityµ ' µo = 4π× 10−7 andε ' εo = (µoc

2)−1, then (1.1b) can
be rewritten

∇ × B = µ j + c−2 ∂tE , (1.2)

the last term can obviously be neglected provided the typical velocity of the phe-
nomena we investigate (i.e. the ratio of a typical length scale to a typical time)
remains small compared to the speed of lightc. We will therefore neglect this term
in the sequel, on the basis of a “low-frequency” approximation,

∇ ×B = µ j . (1.3)

An additional constitutive relation is required, it is Ohm’s law relating electric cur-
rents to the electric field throught the electrical conductivity σ

j = σE . (1.4)

These equations are valid in a reference frame at rest. Because the fluids we will
consider are generally not at rest, it is necessary to introduce some modifications
for the equations to be valid in the case of a moving medium. Following standard
electromagnetic theory





E′ =(1 − γu)
u ·E
|u |2 u + γu (E + u × B) ,

B′ =(1 − γu)
u ·B
|u |2 u + γu

(
B− u ×E

c2

)
,

(1.5a,b)

whereγu = (1− |u |2 /c2)−1/2 is the Lorentz factor.
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Under the assumption that| u |<< c, the Lorentz factor can be set equal to unity.
From (1.1a), it follows that| E |∼| u | | B | , and the only modification associated
with the displacement of the reference frame is therefore

E′ = E + u × B , (1.6)

and Ohm’s law then becomes

j = σ (E + u ×B) . (1.7)

Let us now assume that the medium is in neutral state, more explicitly

ρc ≡ Zi ni − e ne = 0 , (1.8)

whereρc is the charge densityZi is the average charge of ions in the medium, and
ne andni are the number densities respectively of free electrons andions.

As stressed by Roberts (1967), this assumption cannot be rigorously valid in a fluid
conductor, since the divergence of (1.7) with (1.1d) implies

∇ · (u × B) = −ρc/ε (1.9)

Because∇ · (u × B) 6= 0 the charge density cannot be exactly vanishing. One can
however rely again on the smallness ofε to neglectρc in the sequel.

Electrical currents are present in the medium providedue 6= ui, then

j = Zi ni ui − e ne ue , (1.10)

using (1.8) j = −e ne u′

e , with u′

e = ue − ui . (1.11)

From a strict point of view, the three equations of motion should now be established,
one for each: neutrals, ions and electrons.

The key assumption in single-fluid MHD is that collisions occur often enough to
mechanically couple all three components. We need in particular to formulate this
assumption for ions and neutrals. In fact, while this is clearly a valid assumption
for the Earth’s core or for solar dynamics, in some weakly ionized plasmas relevant
to the interstellar medium (ISM), the drift of charged particles with respect to the
neutrals can become significant. This effect is referred to as ambipolar drift, or
ambipolar diffusion.1 We will not consider this effect at this stage.

1 The term “ambipolar diffusion” can be slightly misleading, since this effect is not strictly equiva-
lent to resistive diffusion. In particular, it preserves magnetic topology (as will be discussed later
for ideal MHD). Still, this effect acts to damp fluctuations on small scales.
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The relative velocity of electrons to ions,u′
e, can be estimated from the ampli-

tude necessary to produce electrical currents compatible with the observed magnetic
fields for the geophysical and astrophysical applications addressed in this book.

From (1.3) and (1.11) we write

|u′

e |'
|B |

µL |e | ne

, (1.12)

which can be used to obtain rough estimates ofu′
e:

– in the case of the Earth’s core

|u′

e |'
10−4

4π × 10−7 × 106 × 2 × 10−19 × 1029
' 10−20m s−1 . (1.13a)

– in the case of the Sun

|u′

e |'
10−1

4π × 10−7 × 2 × 108 × 2 × 10−19 × 1029
' 10−14m s−1 . (1.13b)

– in the case of galaxies

|u′

e |'
5 × 10−10

4π × 10−7 × 1020 × 2 × 10−19 × 103
' 10−8m s−1 . (1.13c)

In all these cases the velocity of the flow| u | (i.e. ions and neutrals) is much
larger than|u′

e | . |u | is of the order of10−4m s−1 in the slow moving liquid iron
Earth’s core, and much larger in the Sun and in galaxies. These are thus extremely
small deviations from the mean velocity. We shall thereforeadopt the “single fluid”
approximation, i.e. we will assumeun ' ui ' ue and use a single fluid model,
while retaining the small differenceu′

e = ue − ui only as a source of magnetic
induction.

The curl of (1.7), with (A.25) and (1.1c), immediately yields,

∂tB = ∇ × (u × B) + η∆B , (where∆ ≡ ∇
2) , (1.14)

the coefficientη = 1/(σ µ) is referred to as themagnetic diffusivity, assumed here
to be constant. One must not forget the additional constraint provided by (1.1c):

∇ ·B = 0 . (1.15)

It is to be noted that, provided this constraint is satified ata given time, (1.14) will
ensure it remains satisfied for all time.

In addition, this constraint can conveniently be used to rewrite the magnetic field in
terms of a vector potentialA

B = ∇×A . (1.16)
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I NFLUENCE ON MATTER

We have seen above how fluid motions can affect the magnetic induction. The in-
duction equation derived above is the starting point of dynamo theory. However with
this equation alone, and a prescribed flow, the field is governed by a linear equation
(this is referred to as the “kinematic dynamo” problem, and will be discussed later
in this chapter). The magnetic field could then grow exponentially and reach unre-
alistic values. In fact a retroaction of the field on the flow, in the form of the Lorentz
force, prevents such accidents.

The Lorentz force density is given by

FL = niZi (E + ui ×B) − nee (E + ue × B) = j × B = µ0
−1(∇ ×B) × B ,

(1.17)
where (1.8) and (1.10) have been used. This force density applies to the single-fluid
described above. It can be expended as

µ0
−1(∇ × B) × B = µ0

−1
[
(B · ∇)B− 1

2
∇ |B |2

]
, (1.18)

where the first term is known as the “magnetic tension”, and the second as the “mag-
netic pressure”.

1.1.2. THERMODYNAMIC EQUATIONS

In the case of planets and stars, it is expected that convection is the main source of
motions. We will assume, for simplicity, a single driving mechanism for convection
in this section. This is not fully valid for investigating the Earth’s core, for which
compositional as well as thermal driving need to be considered. A similar set of
equations can however be recovered in this case by introducing a codensity variable
accounting for both of these effects. For a rigorous derivation of the equations in
this more complicated case and including turbulence modelling, the reader should
refer to Braginsky and Roberts (1995, 2003).

Denoting byP , ρ andT , the pressure, density and temperature, we assume that
the equation of state of the fluid is given by the following three thermodynamic
coefficients, the dilatation coefficient for constant pressureαP , the specific heat at
constant pressurecP , and the polytropic coefficientγ :

αP = −T
ρ

∂ρ

∂T P

, cP =
∂H

∂T P

, γ =
ρ

P

∂P

∂ρ S

, (1.19a,b,c)

whereH denotes the specific enthalpy, andS denotes the specific entropy of the
system.
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From the second principle of Thermodynamics, we deduce that

dE = TdS +
P

ρ2
dρ , (1.20)

whereE = H − P/ρ denotes the specific internal energy, and thus

cP = T
∂S

∂T P

. (1.21)

Finally, one can also introduce for convenience

αS = −1

ρ

∂ρ

∂S P

=
αP

cP
. (1.22)

All thermodynamic relations are deduced from (1.20) and thepreceding three coef-
ficients. Indeed, from (1.20)

dP

P

(
1

γ
+
Pα2

P

ρTcP

)
=

dρ

ρ
+
αP dT

T
, (1.23a)

dS

cP
=

dT

T
− PαP

ρTcP

dP

P
, (1.23b)

and

αSdS =
1

γ

dP

P
− dρ

ρ
. (1.23c)

Introducing the heat productionδQ, the heat fluxq, and the rate of internal dissi-
pation per unit volumeE (including viscous and ohmic dissipation), we can rewrite
the second principle of Thermodynamics, using the fact thatTdS = δQ = −∇ · q

ρDtE − p

ρ
Dtρ = −∇ · q + E , where Dt ≡ ∂t + u · ∇ (1.24a,b)

denotes the lagrangian derivative.

This expression, together with Fourier’s law of heat conduction for the temperature
T (introducing the thermal conduction coefficientk)

q = −k∇T , yields ρ T DtS = ∇ · (k∇T ) + E . (1.25a,b)

1.1.3. NAVIER -STOKES EQUATION

The compressible Navier-Stokes equations include the continuity equation,

∂tρ+ ∇ · (ρu) = 0 , or Dtρ = −ρ∇ · u , (1.26a,b)
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and the momentum equation, written in a rotating reference frame

ρDtu + 2 ρΩ × u = −∇P − ρ∇Φ − ∇ · τ + F , (1.26c)

whereF represents the remaining body forces (including the Lorentz force), andτ
is the viscous stress tensor, with components

τij = −2ρνsij , sij = εij − 1
3

(∇ · u) δij , (1.26d,e)

ν being the kinematic viscosity,Sij the strain rate tensor

Sij = 1
2
(∂iuj + ∂jui) , (1.26f)

andΦ includes the gravity potentialΦg and the centrifugal potentialΦΩ.

The apparent gravity field is then provided byg = −∇Φ. There are here two con-
tributions toΦ. In a non rotating problem, the gravity potential is simply obtained
from

∆Φg = 4πGρ . (1.27)

In a rotating fluid, this potential is complemented by the effect of the centrifugal
potential

ΦΩ =
Ω2s2

2
, ∆ΦΩ = −2Ω2 . (1.28a,b)

For a galactic disk, density is low and centrifugal effects are essential. They balance
the radial component of gravity. As a result, the apparent gravity is oriented along
the axis of rotation.

For much denser objects, like the Earth or the Sun, therôle of the centrifugal effect
is much smaller. It essentially flattens equipotential surfaces. This effect is minute
for these objects, which are almost spherical bodies. Underthis assumtion, gravity
potential varies only with radius. On a given sphere of radiusr, and outward normal
n: ∫

S(r)

∇Φ · n dS = 4π G

∫

V (r)

ρ dV , (1.29)

masses at larger radii cancel their contributions. So that for a sphere of uniform
density, gravity is proportionnal to radius:

g = −4
3
πGρr er. (1.30)

Note that using (1.26a,b), the energy equations (1.24a) canbe rewritten as

ρDtE + P ∇ · u = ∇ · (k∇T ) + E . (1.31)

These equations need to be complemented by an equation of state relatingP, ρ, and
T as described in the previous section.

This set of equations is appropriate to describe the dynamics of galaxies. Simpler
models can however be derive for convection in planets and stars. This is the objects
of the next section.
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ANELASTIC APPROXIMATION

Two major steps constitute the anelastic approximation. The first consists in filtering
out acoustic waves, while the second is a linearization of fluctuating variables around
the reference state. Both can be achieved by an appropriate expansion.

In order to derive the most classical approximated models, we rewrite the above set
of equations in dimensionless form. Let us introduce a typical velocityU∗, length
L∗, densityρ∗, and temperatureT∗. Equation (1.23b) providesP∗ = ρ∗T∗cp∗/αp∗ =
ρ∗T∗/αs∗. Having set four units, and since nine parameters define our problem
(L, T∗, ρ∗, cp∗, αp∗, ν, k, G,Ω), five independant non-dimensional combinations can
be constructed. We define the Reynolds numberRe, the Rossby numberRo (mesur-
ing the ratio between the rotation and the hydrodynamic timescale), the Froude
numberFr (mesuring inertia versus gravity forces), the ratioX of gravity to pres-
sure forces, and finaly the Prandtl numberPr,

Re =
U∗L∗

ν
, Ro =

U∗

ΩL∗

, Fr =
U 2
∗

L∗g∗
=

U 2
∗

4πL2
∗
Gρ∗

, (1.32a,b,c)

X =
ρ∗g∗L∗

P∗

=
αs∗ρ∗4πL

2
∗
G

T∗
, Pr =

νρ∗cp
k

=
ν

κ
. (1.32d,e)

The equation of mass conservation remains unchanged, whereas the momentum and
energy equation can be rewritten (note thatρ is now dimensionless) as

ρDtu +
2

Ro
ρk × u = − 1

XFr
∇P +

1

Fr
ρeg +

2

Re
∇ · (ρs) , (1.33)

wherek denotes the unit vector along the rotation axis,Ωk = Ω .

To simplify the following development, we have dropped herethe forcing termF .
The magnetic field being maintained by convective motions, the Lorentz force will
be re-introduced later in the resulting equations. This simplification although conve-
nient, is not necessary. For a full treatment, including theLorentz force, the reader
is refered to Lantz and Fan (1999).

Finaly the entropy equation becomes

ρ T DtS =
cp

PrRe
∆T − 2XFr

αS∗ Re
ρ s : ε . (1.34)

Let us stress again, that although we use the same symbols as previously, all quan-
tities are now dimensionless. Besides, we used the notation“:” for the double con-
traction of two tensors, i.e.

s : ε = Tr(s · ε) = sij εji . (1.35)
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Heat transfer will be particularly important for stars and planets since it will induce
convective motion directly related to dynamo action. Sincewe are dealing with
convection, it is helpful to define a reference state. The best reference state is the
neutrally stable one, of constantS (this is not the diffusive state). The governing
equations can then be rewritten for deviations over this reference state. This leads to
the “anelastic approximation”.

It will be assumed that deviations are small compared to the reference state. This
assumption is well justified in a strongly convective state and away from boundary
layers.

The reference state is assumed to be fully decoupled from possible nonlinear cor-
relations of the perturbed state, so that the dynamics ofρa, ua andSa is given as-
suming an isentropic equilibrium (∇Sa = 0). Finaly, let us remind that in the limit
of no thermal or radiative conduction, entropySa is uniform, and the corresponding
temperature profile is the adiabatic profileTa.

All quantities are expanded as

ρ = ρ0 + ερρ1 , P = P0 + εPP1 , (1.36a,b)

T = T0 + εTT1 , S = S0 + εSS1 . (1.36c,d)

Linearization of the equation of state around the referencestate provides

ερ = εP = εT = εS = ε .

Let us insist that all quantities in this expansion(ρ0, ρ1, P0, P1, T0, T1, S0, S1) are
order one.

Mass conservation thus becomes

∂t(ρ0 + ερ1) + ∇ · [(ρ0 + ερ1)u1] = 0 . (1.37)

At leading order (becauseρ0 is not a function of time)

∇ · (ρ0u) = 0 . (1.38)

Neglecting higher order terms ensures the filtering of elastic waves out of the result-
ing model, thus the name “anelastic”.

The conservation of momentum can be expressed in a similar manner

(ρ0 + ερ1) [∂tu + (u · ∇)u] +
1

XFr
∇(P0 + εP1) +

2

Ro
(ρ0 + ερ1)k × u

=
1

Fr
(ρ0 + ερ1)∇(Φ0 + εΦ1) −

2

Re
∇ ·

[
(ρ0 + ερ1)(s1 + ε1/2s0)

]
.

(1.39)
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The coupling between energy and Navier-Stokes equations inthis limiting process,
necessary for convection to occur, requiresε ∼ Fr . This scaling reveals at leading
order (1/ε)

1

X ∇P0 = −ρ0∇Φ0 . (1.40)

Equation (1.40), together with (1.23c), provides the balance relevant for the refer-
ence state.
At the next order (ε0), we get

ρ0 [∂tu + (u · ∇)u]+
1

X ∇P1 +
2

Ro
ρ0k×u = −ρ0∇Φ1−ρ1∇Φ0−

2

Re
∇ ·(ρ0 s1) .

(1.41)
It can be useful to manipulate this expression, following Braginsky and Roberts
(1995, 2003), by making use of thermodynamic relations. From (1.23c)

0 =
1

γ

∇P0

P0

− ∇ρ0

ρ0

, (1.42)

while from (1.23b) and (1.23c), we obtain

S1 =
cP
T0

T1 −
cP
ρ0T0

P1 , and αSS1 =
1

γ

P1

P0

− ρ1

ρ0

. (1.43a,b)

Hence it follows that

− 1

X ∇P1 − ρ0∇Φ1 − ρ1∇Φ0 = −ρ0∇

(
P1

X ρ0

+ Φ1

)
− P1

X ρ0

∇ρ0 + ρ1∇Φ0 ,

= −ρ0∇

(
P1

X ρ0
+ Φ1

)
− P1

X ρ0
∇ρ0 −

(
1

γ

P1

P0
− αSS1

)
ρ0∇Φ0 from (1.43b)

= −ρ0∇

(
P1

X ρ0

+ Φ1

)
− ρ0αSS1g0 from (1.42) and (1.40).

Thus equation (1.41) can be rewritten in the more compact form

∂tu+u·∇u+
2

Ro
k×u = −∇

(
P1

X ρ0

+ Φ1

)
−αSS1g0−

2

ρ0 Re
∇·(ρ0 s1) . (1.44)

In the more general case when more than one driving mechanismis considered (e.g.
thermal and chemical in the Earth’s core), it can be convenient to introduce a unique
variable in the momentum equation. This can be achieved by introducing a co-
density variableC (see Braginsky and Roberts, 2003), which reduces in our simpler
case toC = −αSS1.

The entropy equation then provides

(ρ0 + ερ1)(T0 + εT1) (∂t(S0 + εS1) + u · ∇(S0 + εS1)) =
cp

Re Pr
∆(T0 + εT1)
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− 2XFr

αS∗ Re
(ρ0 + ερ1) (s1 + ε1/2s0) : (ε1 + ε1/2

ε0) . (1.45)

At order (ε)

ρ0T0

cp
(∂tS1 + u · ∇S1) =

cp
Re Pr

∆T1 −
2X

αS∗ Re
ρ0 s1 : ε1 . (1.46)

Equations (1.38), (1.44), and (1.46) constitute the anelastic system.

The system governing the slow evolution of the reference state is

∇S0 = 0 , ρ0∇P0 = γP0∇ρ0 , (1.47a,b)

1

X ∇P0 = −ρ0∇Φ0 , ∆Φ0 = ρ0 . (1.47c,d)

This yields the adiabatic temperature profile,∇T0 = −X∇Φ0 , and is completed
by the equation of state relatingP0, ρ0, T0 .
Convection over this reference state is then governed by

∂u

∂t
+ (u · ∇)u +

2

Ro
k × u = −∇

[
P1

Xρ0

+ Φ1

]
− αSS1g0 −

2

Re ρ0

∇ · (ρ0 s1) ,

(1.48a)

∇ · (ρ0u) = 0 ,
ρ0T0

cp

(
∂S1

∂t
+ u · ∇S1

)
=

cp
Re Pr

∆T1 −
2X

αS∗ Re
ρ0 s1 : ε1 .

(1.48b,c)
No separate equation is needed for the quantity∇ [P1/X ρ0 + Φ1] since it acts as a
Lagrange multiplier to satisfy∇ · (ρ0u1) = 0.

Let us stress to conclude this section that under the above discussed approximation
ΦΩ << Φg, the reference state only depends on the radial coordinate.The anelastic
system can then be introduced as a decomposition of each variablef into a spheri-
cally averaged reference statef and a perturbationf ′

f(r, θ, φ, t) = f(r, t) + ε f ′(r, θ, φ, t)

(e.g. Gough 1969, Latouret al., 1976). This formulation allows to introduce a
slow evolution of the reference state (not necessarily compatible with the above
expansion).

We only derive here these equations in their simplest form. Further important effects
can be introduced, such as turbulent transport coefficients(expected to be dominant
in the solar convection zone). The effects of compositionalconvection can also be
envisaged. This is a major ingredient to the Earth’s core dynamics. For a complete
treatment including both thermal and compositional (and also including the effect
of turbulent motions), the reader is refered to Braginsky and Roberts (1995, 2000).
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THE BOUSSINESQ APPROXIMATION

When the region of fluid is thin enough (in a sense to be clarified later) a more
drastic approximation can be introduced, the Boussinesq approximation. It is often
used for thin layers of fluid in the laboratory. Pressure effects are then unimportant,
and the adiabatic temperature profileT0 can be assumed to be constant. This allows
important simplifications in the equations.

Although this is less easily jusified for the large scale astrophysical bodies described
in this book, the Boussinesq approximation provides a reasonnable approximate
model for the Earth core (see Chapter 4). We will therefore describe this further
simplification.

If X << O(1), i.e. if the size of the system is small compared to the typical depth
of an adiabatic gas (P∗/ρ∗g∗), compressibility of the fluid under its own weight can
safely be neglected.

For all quantitiesx expanded above inx1 + εx1 [see (1.36)a–d], we now introduce
a second expansion in terms ofX ,

x0 = x00 + Xx01 , x1 = x10 + Xx11 . (1.49a,b)

System (1.47c,c) at orderX−1 reveals

∇P00 = 0 , (1.51)

and it follows that the temperature and density of the reference profile are constant.
System (1.48) at orderX−1 gives

∇P10 = 0 , (1.52)

while it provides at orderX 0

∂tu + (u · ∇)u +
2

Ro
k × u = −∇Π − αSS10g00 +

2

Re ρ0

∆u , (1.53a)

∇ · u = 0 ,
ρ00T00

cp

(
∂S10

∂t
+ u · ∇S10

)
=

1

Re Pr
∆T10 . (1.53b,c)

All gradient terms have conveniently been written as∇Π in (1.53a), this term being
a Lagrange multiplier to satisfy (1.53b). It follows from (1.52) that

S10 = cP
T10

T00

. (1.54)

We will further need to assume at this stage that we are dealing with a perfect gas,
cP can then be regarded as constant.
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It is usual in the Boussinesq formalism to introduce the coefficient of “thermal ex-
pansion”α. It is defined, using dimensional variables, by

δρ

ρ
= α δT , (1.55)

and relates to the previously introducedαS andαP through

α = −1

ρ

(
∂ρ

∂T

)

P

=
αScP
T∗

=
αP

T∗
. (1.56)

In dimensionless from (for clarity, we introduce here a different symbol) it yields

α′ = αScP = αP . (1.57)

System (1.48) then becomes,

∂tu + (u · ∇)u +
2

Ro
k × u = −∇Π − α′T10g0 +

1

Re
∆u , (1.58a)

∇ · u = 0 , ∂tT10 + u · ∇T10 =
1

Re Pr
∆T10 . (1.58b,c)

In the Boussinesq approximation the entropy and the temperature are equivalent up
to a scaling factor (1.54). To recover a more classical dimensionless formalism, let
us assume that a super adiabatic entropy gradient is maintained accross the system.
This gradient provides the natural unit for temperature, while the velocity scaleU∗

can be set toκ/L0.
One can then introduce the Rayleigh number, and the Ekman number, respectively

Ra =
α∆T g∗ L

3
∗

νκ
, and E =

ν

ΩL2
∗

. (1.59a,b)

Using (1.36), one recovers the classical system

∂tu + (u · ∇)u +
2 Pr

E
k × u = −∇Π − Ra PrTg0 + Pr ∆u , (1.60a)

∇ · u = 0 , ∂tT + u · ∇T = ∆T . (1.60b,c)

Finally, it is often useful to decompose the temperature field in two contributions,
a steady contribution satisfying the boundary conditions (and balancing an internal
source term, if any), and a perturbation with homogeneous boundary conditions (and
governed by a homogeneous equation):T = Ts + Θ. Provided∇Ts × ∇Φ = 0 (as
will be the case under for a perfectly spherical problem), the resulting system is

∂tu + (u · ∇)u +
2 Pr

E
k × u = −∇Π − Ra Pr Θg0 + Pr∆u , (1.61a)
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∇ · u = 0 , ∂tΘ + u · ∇Ts + u · ∇Θ = ∆Θ . (1.61b,c)

To conclude, let us stress that since all gradient terms are included in the∇Π term
(acting as a Lagrange multiplier to satisfy incompressibility), when the magnetic
field is included and the Lorentz force applies, the magneticpressure term will
therefore not enter the dynamical balance. This term can produce buoyant effects
in regions of localized intense field. Such magnetic buoyancy is believed to be of
particular importance for solar dynamics. It is possible toconstruct approximations
which retain this dynamical effect while considering simple incompressible fluids.
This is done very much in the same way as thermal buoyancy has been retained here.
We refer the reader to Spiegel & Weiss for such a derivation, achieved at the cost of
relaxing (1.1c).

1.1.4. BOUNDARY CONDITIONS

When investigating a planet, a star, or a galaxy, it is convenient to consider a bounded
finite volume of spaceD in which the relevant physics will be investigated. While
the fluid can often be assumed to remain within this volume, the magnetic field on
the other hand cannot easily be artificially confined. The first, and most natural
assumption is to assume that the outside world (i.e. the complementary domain to
the finite volume of interestcD) consists of vacuum and is insulating. No electrical
current can therefore escape the volumeD, and the resulting∇ × B = 0 in cD,
together with∇ ·B = 0 imply that the field incD derives from a potential

B = −∇Φ , and ∆Φ = 0 . (1.62a,b)

The above relation on the field in the complementary domain provides the necessary
conditions to compute the field evolution inD once continuous quantities across∂D
are identified. Equation (1.1c) implies thatn · B is continuous across the bound-
ary, while equation (1.1a) implies the continuity ofn × E (n is the normal to the
boundary). These can be used to reduce the induction problemto a closed integro-
differential formulation onD (e.g. Iskakov & Dormy, 2005).

Let us note that, while this choice of boundary condition is avery natural one and
will in fact be the only one used in this book, some astrophysical bodies (like the
Sun) are bounded by a conducting corona. For such corona, nothing can balance the
Lorentz force in the momentum equation. As a result, the fieldhas to relax to a state
for which the Lorentz force vanishes. Such state is known as a“force-free” state.
Interestingly, the field is then prescribed from the momentum equation rather than
the induction equation. From(∇ × B) ×B = 0, one deduces that

∇ × B = αB , with (B · ∇)α = 0 , (1.63a,b)
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whereα is real, and must not be confused with the notationα in meanfield theory
(although theα in meanfield theory relates∇ × B to B as well, it derives from a
different physical reasonning). Unlessα is artificially assumed to be uniform incD,
the resulting problem is non-linear and very difficult to address (even determining
the necessary conditions on∂D to determineB in cD is not a trivial issue. So far,
to the authors knowledge, no dynamo model has been produced with this type of
bounding domain (even in the linear approximation). Solar models presently rely on
the matching to a potential field as expressed by (1.62) (see Chapter 6).

Boundary conditions on thermodynamic quantities are, depending on the problem
of the Dirichlet type (fixed value) or of the Neuman type (fixedflux).

Boundary conditions on the fluid flow usually require non-penetration of the fluid at
the boundary

n · u = 0 . (1.64)

While this condition is sufficient when viscosity is omitted, additional conditions
are needed if it is retained. These usually resume for the configurations investigated
in this book to either “no-slip” (1.65a) or “stress-free” (1.65b) conditions:

n × u = 0 , or n · ∇ (n × u) = 0 . (1.65a,b)

1.2. HOMOGENEOUS DYNAMOS

1.2.1. DISK DYNAMO

Let us now introduce the dynamo instability on an apparentlyvery simple device: the
“homopolar dynamo” or “disk dynamo”. Let us consider a conducting disk of radius
r, free to rotate on its axis [see Figure 1.1(a)]. If one placesa permanent magnet
under the disk and rotate the disk at angular velocityΩ then an electromotive force
will be driven between the axis and the rim of the disk. If a conducting wire connects
the rim of the disk to the axis then an electrical current willbe driven through this
wire. This setup was originally introduced by Faraday in 1831, it is a dynamo (it
converts kinetic energy to magnetic energy), but it is not a “self-excited dynamo”,
since it relies on a permanent magnet. Introducing the magnetic flux through the
disk Φ = Bπr2, we can quantify this electromotive forceE by integratingu × B

across the disk. Assuming for simplicity a uniform and vertical fieldB = Bez one
gets

E =
ΩBr2

2
=

ΦΩ

2π
. (1.66a)

If one now replaces the permanent magnet with a solenoid of inductanceL (see
Figure 1.1(b)), one faces an instability problem. If the rotation rate is small enough,
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(a) (b)

Figure 1.1 - (a) The original Faraday disk dynamo. (b) The homopolar self excited
dynamo.

the resistivity will damp any initial magnetic perturbation. If the rotation rate is
sufficient (in a way we will immediately quantify), then the system undergoes a
“bifurcation” and an initial perturbation of field can be amplified exponentially by
“self-excited dynamo action”.

Let us introduceM the mutual inductance between the solenoid and the disk, which
allows us, usingΦ = MI to rewrite

E =
MΩI

2π
. (1.66b)

Then,R being the electrical resistivity of the complete circuit, the governing equa-
tion for the electrical currents in the system is

L
dI

dt
+ RI =

MΩI

2π
. (1.67)

It follows that the system is unstable provided

Ω > Ωc =
2πR

M
. (1.68)

In practice, the value ofΩc for an experimental setup would be too high to be re-
alistically achieved. While this setup offers a simple description of a self-excited
dynamo, it cannot be constructed as such in practice (e.g. R¨adler & Reinhardt,
2002).

It is worth stressing here that this mathematical description of the physical setup
is oversimplified. Further developments and refinements will be dicussed later in
the book. Further more, we only consider here a linear problem. The currents here
appears to grow indefinitely. This is because the Lorentz force acting on the disk to
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slow it down has been neglected. This force is the essence of athird setup that can
also be constructed using such a disk configuration: the Barlow wheel. In this setup,
no torque is externally applied to the disk. Instead a battery replaces the current-
meter of Figure 1.1(a), and the interaction between this current and the externaly
applied magnetic field causes the disk to rotate.

1.2.2. CHIRALITY AND GEOMETRY

The simple disk dynamo just described, of course does not possess all the features
found in fluid dynamos. One property that it does possess is that of chirality ; there
is no symmetry between the system and its reflexion. The direction of rotation of the
disc compared with the way in which the coil is wound (i.e. thesign ofΩM ), is of
crucial importance. It will be seen that chirality is very important for the production
of large scale magnetic fields by fluid dynamos, though it is not essential for the
production of local small scale fields; this is accomplishedby stretching instead. The
disc dynamo has no stretching properties, which on the face of things would suggest
that magnetic energy could not be increased. However the disc dynamo is not a fluid,
and current is constrained to flow in the wires and through thedisc. This corresponds
to a highly anisotropic electrical conductivity, while in ahomogeneous fluid dynamo
one expects the conductivity to be isotropic, at least to a first approximation. The key
to a successful dynamo is to get the currents to flow in such a way that the resulting
fields reinforce those previously existing - not a trivial task for homogeneous fluid
bodies! In general currents will wish to take the shortest paths and unless the flow
fields are sufficiently complicated they will simply not be able to produce the correct
topology for sustained growth.

In fact it is notable that astrophysical bodies such as the Earth and Sun in which large
scale fields are generateddo in fact possess symmetry under reflection and exchange
by rotation of North and South poles. So while local properties of motion in these
bodies are chiral, the net lack of chirality distinguishes them from the disc problem.

1.2.3. BASIC MECHANISMS OF DYNAMO ACTION

The dynamo process is in essence a way of turning mechanical energy into magnetic
energy. To see this we can take the scalar product of the induction equation (1.14)
with B, integrate over some suitable domain and obtain, after someintegration by
parts and ignoring all boundary terms:

1

2

d

dt

∫
|B|2dx =

∫
B · (B · ∇u)dx − η

∫
|∇B|2dx , (1.69)
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The second term here is negative and represents the conversion of energy into heat
due to Ohmic losses. The first term (due to induction) can be rewritten (in the case
∇ · u = 0) as−

∫
u · [(B · ∇)B] dx and this is just the negative of the work done

by the velocity field against the Lorentz force. Clearly there can be no growth of
magnetic energy, let alone total magnetic flux, unless the induction term is effective.
We can see how induction can act to increase magnetic energy by ignoring the effects
of diffusion entirely. We are left with the reduced system

∂tB = ∇ × (u × B) . (1.70)

This is formally identical to the vorticity equation forω = ∇×u in an inviscid fluid,
and we can therefore take over many results about the kinematics of vorticity (but
not, note, of the dynamic aspects, since in MHD we do not haveB = ∇×u!). In
particular, Faraday’s law that the total flux threading a material element is conserved,
is completely equivalent to Kelvin’s circulation theorem,i.e.

∮
C
u ·dx =

∫
S

ω ·dS is
constant for material curvesC spanned by material surfacesS. This has the corollary
that “vortex lines move with the fluid” (Kelvin). For magnetic fields the analogous
“freezing-in” result is called Alfvén’s Theorem. Consider then vortex stretching.
In an extensional flow involving contraction in two directions and expansion in the
third, a material tube of vortex lines aligned with the expanding direction has con-
stant total vorticity at every cross section. Since the cross sectional area is diminish-
ing, the local vorticity must increase, and so since the volume is fixed the integral
of |ω|2 also increases. Exactly the same argument can be applied to magnetic fields,
with the result that such stretching flows can increase magnetic energy. Note, how-
ever that the total magnetic flux is not increased, so this mechanism as it stands is
not able to account for any increases in e.g. dipole moments in conducting spheres.
In addition, in a finite domain stretching must be accompanied by folding, as in
kneading dough, and this second action will in general bringoppositely directed
fields together, where they will cancel due to Ohmic dissipation. This does not al-
ways happen though, as can be seen from the Vainshtein-Zeldovich dynamo (the
Stretch-Twist-Fold, or STF mechanism) leads to the effective doubling of the energy
of a loop of flux, as shown in Figure 1.2. This is the most dramatic example of a
number of transformations of the space that can lead to net stretching. More explicit
examples of the consequences of folding and stretching are given in Section 1.6.
There are outstanding questions as to whether such folding can exist throughout a
homogeneous fluid; in general some cancellation will occur.In particular, when
fields and flows are two–dimensional there is always too much folding, cancellation
always dominates stretching and fields will decay. A simple example is provided by
the non-dimensional flow fieldu = (−x, 0, z) (where the timescale has been based
on a typical velocityU0 and a typical lengthL), with B = (0, 0, B(x, t)). From
(1.14) we can see, introducingRm = U0L/η, thatB obeys

∂tB − x ∂xB = B + Rm−1 ∂xxB . (1.71)
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(a) (b)

(c) (d)

B B X

B B

B B

B B

Figure 1.2 - Sketch of the STF mechanism (after Fearnet al.1988). The final mag-
netic flux is doubled.

If B(x, 0) = Re
{
β0 eik0x

}
then

B(x, t) = Re
{
β0 exp

[
t− k2

0(e
2t − 1)/2Rm

]
exp

(
ik0 etx

)}
, (1.72)

so that|B| eventually decays superexponentially. This is due to diffusion acting on
the exponentially increasing gradients caused by folding.In spite of this, however,
we can have transient growth of magnetic energy for long times∼ ln(Rm/k2

0). As
Rm → ∞ energy can increase indefinitely. This example is instructive in that it
points up the singular nature of the infiniteRm limit; the limits of large times and
large conductivity cannot be interchanged.

1.2.4. FAST AND SLOW DYNAMOS

An important application of dynamo theory is to astrophysical applications, in which
we need to understand the behaviour of dynamo growth rates when Rmis very
large. WhenRm is of order unity, the two intrinsic timescales, associatedwith
the turnover time and the Ohmic diffusion rate are comparable, but at largeRm the
turnover/advective timescale is much shorter, while the Ohmic time is longer than
any recognisable magnetic process. Thus we ask; can magnetic energy (or magnetic
flux or dipole moment) grow at a rate independent ofη asη → 0? This leads to the
distinction between fast and slow dynamos. The subject is treated in much greater
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I

insulating strips

Figure 1.3 - The segmented Faraday dynamo (Moffatt, 1979). The insulating strips
in the inner part of the disc ensure that the current is radialthere.

detail in Section 1.6: here we give only a brief outline, concentrating on the problem
of growth of flux at largeRm.

For aslow dynamogrowthrates (on the advective timescale)→ 0 asRm → ∞,
while for afast dynamogrowthrates (or at least thelim sup if there are many modes)
do not tend to zero at largeRm. In this case the field appears on all scales as
Rm → ∞, and diffusion can never be neglected. This important pointwas first
made by Moffatt and Proctor (1985). While as we have seen it iseasy to produce an
increase in magnetic energy if diffusion is entirely neglected, an increase of mag-
neticfluxof dipole moment can only occur due to the presence of diffusion (as shown
by Faraday’s Law). This is necessary to get round flux conservation as diffusion be-
comes negligible. The Faraday disc dynamo has been discussed in Section 1.2.1.
Here we examine a modification introduced by Moffatt (1979),which illustrates the
rôle of diffusion in preventing fast dynamo action. This is the segmented Faraday
dynamo (see also the brief discussion in Section 2.8). It is best understood by ref-
erence to Figure 1.3; the difference from the usual single disc dynamo geometry,
as shown in Figure 1.3 is that currents are constrained to move radially on the disc
except near the outer edge.

We can write down simple equations relating current in the wireI, current round the
discJ , the angular velocityΩ and the fluxes through the wire and disc, respectively,
ΦI ,ΦJ . We obtain

ΦI = LI +MJ, ΦJ = MI + L′J, RI = ΩΦJ − dΦI

dt
, R′J = −dΦJ

dt
. (1.73)

We seek solutions∝ ept. As for the usual dynamo, we find growth ifΩM > R. The
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growthrate is

p+ =

√
(RL′ + R′L)2 + 4R′(ΩM − R)(LL′ −M 2) − (RL′ +R′L)

2(LL′ −M 2)
. (1.74)

We can see thatp+ > 0 for all Ω > R/M but p+ ∼
√

ΩR′ asΩ → ∞. Thus
the growthrate is controlled by diffusion and not exclusively by advection, and in
particular the growthrate tends to zero on the advective timescaleΩ−1.

We shall discuss further aspects of fast and slow dynamo action in realistic flows in
Section 1.3; the whole subject of the fast dynamo problem is treated in much more
detail in Section 1.6.

1.3. NECESSARY CONDITIONS FOR DYNAMO ACTION

1.3.1. DEFINITIONS OF DYNAMO ACTION

In this section, we describe various rigorous results concerning dynamo action. It
is helpful first to give a precise definition of what is meant bydynamo action: the
definition depends on the geometry considered. We can consider either a bounded
conductor surrounded by insulator, or magnetic fields and flows defined in a periodic
box. Many generalizations are possible (for example, one could consider the effects
of an external stationary conductor, as was done by Proctor,1977a), but the details
complicate the analysis.

Case 1:Finite conductor.
SupposeB is defined in a finite volumeD, surrounded (incD) by an insulator.
In cD we have∇ × B = 0, with all components ofB continuous at∂D,
because there are no surface currents. We suppose no currents at infinity, so
that|B| ∼ O(|x|−3) as|x| → ∞.

Case 2:Periodic dynamo.
B is defined in a periodic domainD ∈ R

3, with
∫
D

B dx = 0.

In each caseu satisfies∇·u = 0, and has time-bounded norm (for Case 2, we choose
a frame so that the mean value ofu vanishes. Several different norms can be defined,
for exampleU ≡ maxD(|u|), S ≡ maxD,i,j(|∂jui|), E1/2 ≡

(∫
D
|∇u|2dx

)1/2
, . . .,

etc. In Case 1, we suppose thatu = 0 on ∂D (this is not strictly necessary for
some of the bounds but aids the analysis). Then we can define the magnetic energy
M = 1

2

∫
|B|2 dx where the integral is overR3 in Case 1, or overD in Case 2. The

usual requirement for dynamo action is thatM does not tend to zero ast→ ∞.
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1.3.2. NON-NORMALITY OF THE INDUCTION EQUATION

In the next subsections we give several criteria which, if violated, rule out dynamo
action. These arenecessary conditions. It is notable that there are no general suf-
ficient conditions known for dynamo action; working dynamoscan only be found
by explicit integration of particular flows. This is becausethe induction equation,
considered as a parabolic linear operator, isnon-normal; whenu is independent of
time, the eigenvectors found by looking for solutions∝ exp(pt) are not orthogonal,
and so even when all eigenvectorsp have negative real part, i.e. when we have a
non-dynamo, the magnetic energy can still increase for sometime. The condition
that the energy decays is much stronger than that the spectrum is in the left hand half
plane. The situation is analogous to that of the stability ofshear flows, for which the
energy stability result of Orr gives a bound on the Reynolds number that is far be-
low observed stability thresholds. A simple example of thiseffect is provided by the
interaction of a purely zonal flow with a meridional field in a sphere. For largeRm
the zonal field increases more rapidly than the meridional field decays, leading to
transient growth of the magnetic energy, but the meridionalfield eventually decays
and the whole system runs down.

1.3.3. FLOW VELOCITY BOUNDS

If we nonetheless try to find conditions for the decay of the magnetic energy, we
focus on (1.69), which gives us in Case 1

dM
dt

= P − ηJ , (1.75)

whereP andJ can take the alternative forms:

P =

∫

D

B · (B · ∇u) dx =

∫

D

(u ×B) · (∇ × B) dx , (1.76)

J =

∫

D

|∇ × B|2 dx =

∫

R3

|∇B|2 dx , (1.77)

(for Case 2, we have the same results, but all integrals are taken overD).

In order to construct the proofs we shall need aPoincaŕe inequality. DefiningF =
1
2
J /M, we haveF ≥ c−2; c ∝ (

∫
D

dx)1/3. For a sphere of radiusa, c = a/π,
while for a periodic cube of sidea, c = a/2π. The proof of this result can either be
done by the standard methods of variational calculus, or by expressing the magnetic
field in terms of spherical harmonics.

Using the above inequality together with (1.75) in the case thatP = 0 (stationary
conductor) we have the result thatd(lnM)/dt ≤ −2 η c−2, so that the magnetic
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energy decays exponentially at a finite rate. It is not surprising, then that a finite
velocity is needed for dynamo action to be possible. We can find bounds on each of
the three norms defined above. We have the following bounds onP:

(a) P ≤ U

∫

D

|B · ∇B|dx ≤ U(2M)1/2J 1/2 Childress (1969) ,

(b) P ≤ S(2M) Backus (1958) ,

(c) P ≤ E
1/2

(∫

D

|B|4dx
)1/2

≤ E
1/2c1(2M)1/4J 3/4 Proctor (1979) ,

wherec1 is a dimensionless constant (Proctor (1979) gives the value4). Using these
results we can get three bounds on the exponential growthrateσ = d(lnM)/dt:

(a)
1

2
σ ≤ F1/2(U − ηc−1) ,

(b)
1

2
σ ≤ S − ηc−2 ,

(c)
1

2
σ ≤ F3/4(c1E

1/2 − ηc−1/2) .

So if M is not to tend to zero we must haveU > η/c, S > η/c2, E > η2/cc21. (The
first result can be proved under the less restrictive assumption u · n = 0 on ∂D.)
BecauseF has a minimum value we can get upper bounds onσ in cases (a) and (c)
that do not involveF :

(a)
1

2
σ ≤ max

[
(U/c − ηc−2),

U2

4η

]
,

(c)
1

2
σ ≤ max

[
(c1E

1/2c−3/2 − ηc−2),
27c41E

2

256η3

]
.

It is notable that none of these bounds involves the kineticenergyK = 1
2

∫
D
|u|2dx

of the velocity field. In fact a working dynamo can be found with arbitrarily small
energy. Consider a velocity fieldu in a sphere of radiusR surrounded by stationary
conductor. For a steady dynamo the induction equation is invariant underx → x/R,
u → Ru, K → RK. Thus asR → 0 the necessary energy→ 0. The argument can
be extended to the case where the conductor is replaced outside some large radius
by an external insulator.
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1.3.4. GEOMETRICAL CONSTRAINTS

These conditions are of two kinds; restrictions on the nature of flows that can give
growing field, and constraints on the types offield that can be sustained by dynamo
action. In the first category, until recently the best resultwas thetoroidal theorem
of Elsasser (1946), Bullard & Gellman (1954) (see also Moffatt, 1978). For Case 1,
if we multiply (1.14) byr ≡ r er and integrate then we obtain (definingP = B · r,
Q = u · r),

∂tP + u · ∇P = B · ∇Q+ η∆P in D , (1.78)

with ∆P = 0 in cD, andP, ∂P/∂r continuous on∂D.

If ∇ · u = 0 , we can separateu into toroidal and poloidal partsuT , uP , where

u = uT + uP ≡ ∇ × (φ r) + ∇ × ∇ × (ψ r) . (1.79)

It follows thatQ = L2ψ, whereL2 is the angular momentum operator, defined as

L2 = (r · ∇)2 − r2∆ . (1.80)

A similar decomposition can be made forB, with

BT = ∇×(T r) , BP = ∇×∇×(S r) , with P = L2S . (1.81a,b,c)

If therefore the velocity field is toroidal,ψ = 0 and soQ also vanishes. Then (1.78)
reduces to a sourceless diffusion-type equation forP , so that

1
2
∂t

∫

D

P 2dx = −η
∫

R3

|∇P |2dx < −ηc−2

∫

D

P 2dx ⇒ |P | → 0 . (1.82)

Once|P | and so|BP | becomes negligible the equation for the toroidal part of the
induction equation can also be simplified. Nowu, B are both toroidal, and

∇ × (u ×BT ) = ∇ × [−r(u · ∇T )] . (1.83)

After “uncurling” (integrating and setting the arbitrary function ofr that arises to
zero without loss of generality), we obtain

∂tT + u · ∇T = η∆T , with T = 0 on ∂D . (1.84)

Apart from the boundary conditions this is the same equationas satisfied byP , and
we can show by similar means that

∫
D
T 2dx → 0 (exponentially) also. While this

result does not rule out a transient increase in the magneticenergy ofBT , which
depends upon mean square gradients ofT , it can be shown that if the magnetic
energy doesnot tend to zero thenF must increase without bound, and so eventually
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Childress’ result above will be violated, giving a contradiction. Thus a dynamo is
impossible.

A similar result holds in cartesian coordinates (Case 2), whenu · z = 0, then

∂tBz + u · ∇Bz = B · ∇uz + η∆Bz , (1.85)

and we can apply exactly analogous reasoning (Zeldovich, 1957).

Busse (1975) used (1.78) whenQ 6= 0 to obtain a bound on the ratio of toroidal and
poloidal field energies. We have

1

2

d

dt

∫

D

P 2dx = −
∫

D

QB · ∇Pdx − η

∫

R3

|∇P |2dx

≤ max
D

Q

(
2M · 2

∫

R3

|BP |2 dx

)1/2

− 2η

∫

R3

|BP |2 dx

where the inequality
∫

R3 |BP |2dx ≤ 1
2

∫
R3 |∇P |2dx has been used (see, for exam-

ple, Proctor, 2004). Then we have the result that

max
D

Q ≥ η

(
1

M

∫

R3

|BP |2 dx
)1/2

. (1.86)

Though this result may be useful in interpreting geomagnetic data, it is not of course
an anti-dynamo theorem. Nonetheless it turns out that (as might be expected) dy-
namo action can be ruled out if the poloidal flow is sufficiently weak for any given
toroidal flow. In fact it is possible to find inequalities for time derivatives ofP 2 and
T 2, namely (choosing some constantµ > 0)

1

2

d

dt

(∫

D

(P 2 + µT 2)dx

)
≤

(
aUP√

2
− η

)
(P2+µT 2)+

[
a2UP +

µ

2
(UT + UP )

]
PT ,

(1.87)
whereP2 =

∫
R3 |∇P |2dx, T 2 =

∫
D
|∇T |2dx, andUP , UT are the maxima of|uP |,

|uT | respectively inD. For an appropriate choice ofµ we can show that the best
possible condition under which the left hand side is negative definite is

a2UP (UT + UP ) − 2

(
η − aUP√

2

)2

< 0 or a2UPUT + 2
√

2ηaUP < 2η2

(1.88a,b)
(Proctor, 2004). Poincaré inequalities may be used to showthat the integrals of both
P 2 andT 2 decay exponentially, and this implies eventual decay of themagnetic
energy as argued above. The result (1.88a,b) does not rule out dynamo action when
the velocity fieldu is purely poloidal; and indeed there are examples in the literature
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Figure 1.4 - The poloidal dynamo of Gailitis (from Gailitis 1970). The flow is
axisymmetric, while the magnetic field is proportional toeiφ. Two different parities
of solution are shown. Suffix 1 refers to fields generated by the lower ring, suffix 2
those due to the upper ring. For more details see e.g. Fearnet al.(1988)

of dynamos with purely poloidal velocity fields. A classic example is provided by
the twin-torus dynamo of Gailitis (Gailitis, 1970), see Figure 1.4.

As regards constraints on the field, the main result isCowling’s Theorem(Cowling,
1934): An axisymmetric magnetic field cannot be maintained by dynamo action. It
should be noted that ifB is axisymmetric then so isu but the converse is not true,
and the dynamo of Gailitis (1970) above provides an example of an axisymmetric
flow field which acts as a dynamo for non-axisymmetric fields. There are several
proofs of this in various cases. We first follow the proof of Braginsky (1964). We
again assume∇ · u = 0, and that the conducting regionD is spherical. SinceB,u
are axisymmetric we can separate the zonal and meridional parts of (1.14) by writing
(in polar coordinates(s, φ, z));

B = Beφ + ∇ × (Aeφ) = B eφ + BP , u = uP + U eφ . (1.89a,b)

Since there are no imposed zonal currents, we get

∂tA+
1

s
uP · ∇(sA) =

1

Rm

(
∆ − 1

s2

)
A , (1.90a)

∂tB + suP · ∇
(
B

s

)
= sBP · ∇

(
U

s

)
+

1

Rm

(
∆ − 1

s2

)
B . (1.90b)

Further simplification ensues if we writeA = χ/s, B = ψs, U = Ωs. Then we
obtain the alternative system

∂χ

∂t
+ uP · ∇χ = η

(
∆ − 2

s

∂

∂s

)
χ , (1.91a)

∂ψ

∂t
+ uP · ∇ψ = BP · ∇Ω + η

(
∆ +

2

s

∂

∂s

)
ψ , (1.91b)
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with (∆ − (2/s)∂/∂s)χ = ψ = 0 in cD andχ ∼ O(|x|−1) as |x| → ∞. It is
notable that the toroidal field does not appear in the equation for χ. The analysis
now proceeds in a similar manner to that for the toroidal theorem. We form the
poloidal “energy equation”

1

2

d

dt

∫

D

χ2dx = η

∫

D

χ

(
∆ − 2

s

∂

∂s

)
χdx = −η

∫

R3

|∇χ|2dx ≤ −η c23
∫

D

χ2dx .

(1.92)
It is then clear thatχ2 → 0, and so by arguments used in the previous subsection,
eventually the poloidal field will decay also. Whenχ is negligible, we can form a
similar relation forψ and show similarly that

1

2

d

dt

∫

D

ψ2dx = η

∫

D

ψ

(
∆ +

2

s

∂

∂s

)
ψ dx

= −η
(∫

D

|∇ψ|2dx + 2π

∫ a

−a

ψ(0, z)2 dz

)
,

(1.93)

and soψ2 → 0 also. We can prove very similar results for fields (and so flows) that
are independent ofz.

There are other types of proofs of Cowling’s theorem, which allow us to generalise
the problem to permitη to depend on position. They show the impossibility of the
maintenance of a steady magnetic field against Ohmic decay when there is a neutral
curve on which the meridional field vanishes at an O-type neutral point. Suppose
that this is atX, and consider a small meridional circleSε centred atX, boundary
Cε, radiusε, with Bε ≡ (2πε)−1

∮
Cε

|BP |dx,

(max
D

|u|)BεSε ≥
∫

Sε
(uP ×BP ) · dx =

∫

Sε
η(x)∇ × BP · dx ∼ 2πεBεη(X) .

(1.94)
This leads to a contradiction asSε ∼ ε2. The neutral ring argument, while in some
sense more general than the Braginsky proof in that the field does not have to be
exactly axisymmetric, is more limited in other ways, since the result of the proof is to
rule out steady fields (for steady flows) and so has nothing to say about exponential
decay. Fuller details are given in Moffatt (1978) and Fearnet al. (1988).

When the flow is not incompressible useful results are harderto find. The equation
for χ is still correct. Sinceχ(0, z) = 0 andχ → 0 as |x| → ∞, there must exist
a positive maximum ofχ, at X(t) where∇χ = 0, ∆χ ≤ 0. This rules out a
growing dynamo with a poloidal field. Hide & Palmer (1982) have argued that if
∆χ(X) = 0 for all time thenχ becomes non-differentiable nearX and soB0 → 0.
The arguments used are appealing but are hard to rigorize. They have been criticized
by Ivers & James (1984). These authors have used maximum principles to show that
both poloidal and toroidal fields decay exponentially, but the bounds for the decay
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rates so far found are not useful, in that the associated decay times are much longer
than that of any astrophysical body. The question of how far aproperly selected
compressible flow in a sphere can reduce the Ohmic decay rate for an axisymmetric
field remains partially open.

1.4. STEADY AND TIME -DEPENDENT VELOCITIES

In this short section, we discuss the differences between the dynamo properties of
steady and time-dependent flow fields. This is necessary because so much of our
intuition on the efficacy of dynamo action is based on thinking about steady flows,
and these can be misleading in the general case.

1.4.1. TWO SIMPLE EXAMPLES

Smooth, steady flowsu are not usually efficient as dynamos at largeRm, because
there is not enough stretching. In particular, smooth axisymmetric or 2D flows can-
not be fast dynamos if they are steady, since there is then no exponential stretching of
material lines (the relation between stretching properties of the flow and growth rates
at largeRm has been discussed earlier, and will be treated in much more detail in
the following). On the other hand time-dependent flows can bevery efficient as dy-
namos, even if they have a very simple Eulerian form. As an example consider two
related flows, the so-called [G.O.] Roberts (Roberts, 1970)and Galloway–Proctor
(GP) (Galloway & Proctor, 1992) flows

Roberts flow: u(x, y) ∝ ∇ × (ψ(x, y) ez) + γψ(x, y) ez ,

ψ = sinx sin y ; (1.95)

GP-flow: u(x, y, t) ∝ ∇ × (ψ(x, y, t) ez) + γψ(x, y, t) ez ,

ψ = sin(y + ε sinωt) + cos(x+ ε cosωt) . (1.96)

The Roberts flow has three components, but depends only onx and y. It has a
fixed cellular pattern; there is no stretching except at the cell corners. The GP-
flow has a very similar cellular structure in the Eulerian flow, but the cellular pat-
tern rotates. The consequences for the stretching properties are profound; there is
stretching (positive Liapunov exponent) almost everywhere (see Figure 1.5). We
can find dynamo action for both these flows by looking for fieldsof the formB =

Re
{
B̃(x, y, t)ei k x

}
. Then the growthrate (for the GP-flow the average growthrate

over one time period of the flow) depends onRm andk.
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(a) (b)

Figure 1.5 - Chaos in the GP-flow. (a) finite-time Liapunov exponents (after Catta-
neoet al. 1996) forω = 1, ε = 1, showing there is exponential stretching almost
everywhere. (b) normal fieldBz (courtesy of F. Cattaneo). Note the large regions of
multiply folded field. (See color insert.)

For the Roberts flow the optimum growthrate occurs at large wavenumber2 k for
Rm � 1, and in factk ∼ (Rm1/2/ ln Rm). As Rm → ∞ the optimum growthrate
is∼ O(ln(ln Rm)/ ln Rm), see Figure 1.6. So this flow is not (quite) a fast dynamo.

The GP-flow is completely different. The growthrate isO(1) for largeRm, and
the optimum wavenumber alsoO(1). Here the flow is chaotic, and though there
are thin flux structures, chaotic regions near the stagnation points do not scale with
Rm. The choice ofk for optimum growth is presumably related to the widths of
these structures. Time dependent flows of this type have proved a fertile ground for
extensive numerical simulation of fast dynamo properties.

1.4.2. PULSED FLOWS

Another important aspect of time-dependent flows is that many restrictions that
would prevent dynamo action for the instantaneous flow field do not apply when the
flow is time dependent. This is associated with the non-normality of the induction
equation, as discussed above. As a particular example we show how the Toroidal
and Zeldovich theorems can be got round for time-dependent flows. Consider the

2 The scalek−1, though small compared to the cell size, is long compared to the thin boundary
layer scaleRm

−1/2 for field near stagnation points.
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Figure 1.6 - Growth rates for the Roberts and GP flows, as functions ofRm andk.
Top figure shows the Roberts flow, with peak growthrates decreasing at largeRm,
and the criticalk increasing. Bottom figure shows the same data for the GP flow
with ε = ω = 1. Note the convergence of the growthrate and critical wavenumber
for largeRm.
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pulsed Beltrami flow(Soward, 1993).

u =

{
(0, sinx, cosx) (0 ≤ t ≤ τ)
(sin y, 0, cos y) (τ ≤ t ≤ 2τ), etc.

(1.97)

This is a planar flow at all but isolated discrete times, but during each intervalτ we
can have transient growth, and this can lead to dynamo action. The development is
most easily seen when we setη = 0 (for smallη the results are almost the same as
long asτ is not too large). In the interval(0 ≤ t ≤ τ) consider the horizontally

averaged fieldB ≡ Re
{
B̃H exp(ikz)

}
, then

BH(τ) = J0(kτ)BH(0) − iτJ1(kτ)Bx(0) ey , (1.98)

which can be large for largeτ . If we add (small) diffusion, we still get growth,
providedτ is much less than the diffusion time. Then the second pulse can refold
and stretch the field and give further enhancement. A more complicated version of
this kind of flow is one that arises in thermal convection, where there is a homoclinic
connection between two different planar flows. In this case the flow is not a dynamo,
because the interval between switching of the flows tends to infinity. The addition
of noise to the system, however, will render the switching time finite and can induce
instability. For further details see Goget al.(1999).



36 Michael PROCTOR

(a) (b)

(c) (d)

–
B

–
B

–
B

–
B

–
J

–
B

V'

w'X

Figure 1.7 - The cyclonic event mechanism as envisaged by Parker (afterRoberts,
1994). The uniform field in (a) is pulled up in (b), twisted in (c), and then reconnects
to form a field loop with a normal component (and so EMF) anti-parallel to the
original field (d).

1.5. TWO–SCALE DYNAMOS

1.5.1. THE TWO –SCALE CONCEPT AND PARKER ’ S MODEL

The dynamo flows we have already met: Roberts, GP and pulsed flows and exten-
sions to 3D flows such as the ABC model (see section 1.6, and Childress & Gilbert
1995) are small scale dynamos. The magnetic field has scales comparable to that of
u. But if B exists on two distinct scales then dynamo action can be easily verified.
Perhaps the simplest model is that of Parker (1955). Supposethat small scale “cy-
clonic events” act on a uniform field. If the velocity of thesesmall-scale motions
has non-zerohelicity, i.e. u · ∇ × u 6= 0, then the field is twisted by the motion
as in Figure 1.7. By Ampère’s Law (1.3) there is generated anEMF parallel to the
original field. The sign of this EMF is opposite to the helicity for short-lived events.
However for longer lived events there is not in general any such clear correlation.
If these helical motions are distributed isotropically then any EMF perpendicular to
the field will cancel out when an average is taken over all events. When this new
EMF is incorporated, we get an extra term∇×αB on the rhs of (1.14); this new
term is called theα–effect. An extended discussion including nonlinear effects is
given in Section 2.7 and Chapter 6.

Parker’s model of the solar magnetic field supposes that the large scale field is ax-
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isymmetric. The crucialrôleof theα–effect is to sustain poloidal from toroidal field.
The same mechanism is also capable of sustaining toroidal from poloidal field, but
is ignored in his model in favour of the much more effectiverôle of zonal shears.
We then obtain the model system

∂tA+
1

s
uP · ∇(sA) = αB +

1

Rm

(
∆ − 1

s2

)
A , (1.99a)

∂tB + suP · ∇
(
B

s

)
= [∇ × (α∇ ×BP )]

+ sBP · ∇
(
U

s

)
+

1

Rm

(
∆ − 1

s2

)
B . (1.99b)

We discuss solutions of this equation below when we have looked at a more system-
atic derivation.

1.5.2. MEAN FIELD ELECTRODYNAMICS

We now suppose formally that the magnetic and velocity fieldsexist on a small scale
` and a large scaleL, and/or on short and long time scales. We may then define some
average over the short scales (denoted by· · ·) and writeB = B + B′, u = u + u′,
etc. Then, taking the average,

∂tB = ∇ × E + ∇ × (u × B) − ∇ × (η∇ ×B) , (1.100)

whereE ≡ u′ ×B′.

In order to calculateE we need to findB′, whose equation is

∂tB
′ = ∇ × (u × B′) + ∇ × (u′ ×B) (1.101)

+ ∇ × (u′ × B′ − u′ × B′) − ∇ × (η∇ ×B′) . (1.102)

This equation can only be solved in special cases but we can make some general
remarks about the nature ofE. Clearly, for fixedu′, B′ depends linearly onB and
soE is a linear functional ofB. Assuming the simplest possible local relation, we
obtain the expression

E i = αijBj − βijk ∂jBk + . . . (1.103)

αij is a pseudo-tensor; the symmetric part is non-zero only if the statistics ofu lack
mirror-symmetry. The anti-symmetric part, on the other hand, acts like a velocity
and because of this it can only be non-zero if the statistics lack homogeneity, or if
there is anisotropy combined with broken reflection symmetry. If we suppose that
the statistics ofu′ are isotropic but not mirror-symmetric, thenαij = αδij.
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We can relate the pseudo-scalarα to the helicity of the small-scale flow. Both arise
from broken mirror-symmetry, and we can give explicit relations in limiting cases.

We can similarly simplify the second term in the expansion for E, for in the isotropic
caseβijk = βεijk, which can be identified as a “turbulent magnetic diffusivity”.

All the foregoing assumes thatB′ owes its existence entirely toB. In this case, in
particular, the value ofα can be determined simply by makingB uniform, in which
caseE i is exactlyαijBj. However, as we have already seen, whenRm is large
enough there is a possibility, indeed a likelihood that a small-scale field can exist
even whenB = 0. It is hard to see how to interpret theα–effect in this situation
since any “mean-field” effect has to exist on top of an alreadyequilibrated small-
scale field. The problem is then intrinsically nonlinear andso beyond the scope of
this section, though it will be considered in the next chapter.

Supposing that indeedE owes its existence toB, we can see that theα–effect can
lead to dynamo action. Consider (writingη + β = η′)

∂tB = ∇ × (αB) − ∇ × (η∇ × B) . (1.104)

If α, β are uniform, we get solutions of formRe
{
B̂ exp(ik · x + pt)

}
, with (p +

η′k2)2 = α2k2, sop+ > 0 for all sufficiently smallk. It can thus be seen that mean-
field dynamo action is inevitable on all sufficiently large scales, provided only that
α 6= 0.

Theα tensor will take more general forms with lower symmetry of flow statistics.
In a sphere, when there are two preferred directions, namelythe rotationΩ and the
radial vectorr, we will get the more general form

E = α1(Ω · r)B + α2r(Ω ·B) + α3Ω(r ·B) + . . . (1.105)

Note that both rotation and a preferred direction would seemnecessary for anα–
effect.

A detailed discussion of possible forms ofE in various cases is given by Krause &
Rädler (1980).

As explained above it is hard to calculateα in the general case. There are two special
cases in which analytical progress can be made:

(a) If Rm, based on the small length scale`, is very small, then there is no small-
scale dynamo. We calculateα by approximating the equation forB′ by

0 = B · ∇u′ + η∆B′ , (1.106)

with B uniform. If we consider, as an example,u′ in the simple Fourier form∝
Re

{
eik·x

}
then we haveB′

i = iBjkju
′

i/ηk
2 so

E i = αij Bj = i εipq kj u′∗p u
′
q Bj/ηk

2 . (1.107)



1.5 – TWO–SCALE DYNAMOS 39

If we choose coordinates in whichk = (0, 0, k) thenE i = αijBj whereαij =
αδi3δj3 andαηk2 = −εijkkju′∗i u

′

k. The latter quantity is just the helicity, and so as
predicted from Parker’s ansatz we see thatα has the opposite sign to the helicity.
Adding together many modes of this type, we can reproduceα due to any velocity
field.

(b) The “short-sudden” approximation. This is used when thesmall-scaleRm is
large, and thus is harder to justify. In general the fluctuating field B′ will be much
larger than the mean field, and so extra assumptions have to bemade to simplify
the equations. We suppose that the fluctuating velocity field, and so the fluctuating
magnetic field, becomes decorrelated on a timeτc short enough that the correlated
part ofB′ is again small compared toB. We ignore diffusion. Then∂tB

′ ≈ B ·∇u′.
This can be solved to giveB′

i ≈ τcB · ∇u′, so in the isotropic case

α = −τc
3

u′ · ∇ × u′ . (1.108)

Again we see thatα is anticorrelated with helicity.

The approximations involved in both these limits essentially ignore the self-interaction
of u′ andB′ in theB′ equation. The equation becomes intractable when these terms
are not ignored, and so apart from these extreme cases it is hard to give useful re-
sults. However there is one result available without approximation in Gruzinov &
Diamond (1994). If we suppose the fields and flow statistically steady with uniform
imposed fieldB (and periodic boundary conditions for simplicity), and, using the
vector potential introduced in (1.16), writeB′ = ∇ × A′ , we then have

∂tA
′ = −∇Φ + u × B′ + u′ × B (1.109)

+ u′ × B′ − u′ ×B′ − η∇ ×B′ , (1.110)

so (ignoring boundary terms that arise from integration by parts)

0 = 1
2

(
B′ · ∂tA′ + A′ · ∂tB′

)
= −B · E − ηB′ · ∇ × B′ . (1.111)

This holds without approximation if boundary terms are ignored. Thus in the isotropic
case

α|B|2 = −η
3

B′ · ∇ ×B′ . (1.112)

This result gives some guidance about the behaviour ofα as the small-scaleRm
increases. In particular, it shows that diffusion must be included in any proper model
of α. If α is independent ofη at largeRm, leading to a fast mean field dynamo, and
we posit that|B′| ∼ ηa|B|, |∇ × B′| ∼ η−1/2|B′|, and is intermittent with a filling
factor∼ ηb, then2a + b = −1/2. Possible solutions includeb = 1/2, a = −1/2
giving sheet-like fields, while if the fields are primarily tubes rather than sheets we
might expecta = −1, sob = 3/2.
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1.5.3. MEAN FIELD M ODELS

If the α–effect is accepted as a model of the effects of small-scale flows on the
large scale field, then Cowling’s theorem does not apply, since now toroidal field
can sustain poloidal field, and so we can investigate axisymmetric models. Physical
considerations (therôle of the Coriolis force in inducing helicity) suggest that in
a rotating body such as the Earth or the Sunα is odd about the equator. Similar
considerations suggest that the zonal flowU should be even, so we can get two
types of field structure: (i) Dipole: whereB is odd about the equator, andA is even.
(ii) Quadrupole;A is odd,B is even. Examples of fields of the two types are shown
in Figure 1.9.

Most models are one of two types: (i) “α2”, with U neglected. This has been used to
model stationary e.g. planetary dynamos; (ii) “αω” in which theα term in (1.99b)
is neglected, as in the Parker model.α2 models typically give steady dynamos (real
growthrates) whileαω models usually give cyclic dynamos (complex growthrates).
We can understand the latter in terms of dynamo waves. We use cartesian geometry;
let

A = A(x, t) , B = B(x, t) , Bp · ∇U ∼ ω∂xA , (1.113a,b,c)

wherex is a variable corresponding to latitude (the term (1.113c) is referred to as the
ω–effect). Substituting into (1.99), and modelling radial derivatives with a constant
damping term, we obtain the simplified system (compare to Equation (6.1a,b) in
Chapter 6).

∂tA = αB + η
(
∂xxA−K2A

)
, ∂tB = ω ∂xA+ η

(
∂xxB −K2B

)
. (1.114a,b)

This has travelling wave solutions withA,B ∝ exp [ik(x− ct)] when

αω = ±2η2(k2 +K2)2/k , c = −αω/[2η(k2 +K2)] . (1.115)

Note that the modulus of the dynamo numberD = αω/η2K3 takes a minimum
value16/3

√
3 whenk = K/

√
3. Note the definite sign of the wave speedc which

depends on the sign ofD.

In a spherical geometryαω models can be used to give models of the solar cycle
(butterfly diagram) by identifying largeB with regions of sunspot eruption. Forms
of α,U and any meridional velocity are prescribed, and the equations solved numer-
ically as an eigenvalue problem to obtain marginal (periodic solutions). A particu-
larly comprehensive study was carried out by Roberts (1972). While these kinematic
studies are now overshadowed by the dynamical studies reported on later, it is in-
teresting to note that travelling waves of activity, similar to the Parker waves, can
be seen propagating latitudinally. The direction of propagation depends on the sign
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Figure 1.8 - Oscillatory Dipolar solutions for anα − ω dynamo (from Roberts,
1972).

(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

Figure 1.9 - As above, but quadrupolar solutions.
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Figure 1.10- Real and imaginary parts of the growth rate for typicalα–ω dynamos
(from Roberts, 1972). Unstable regions are shaded. Thex–axis is reversed in
the lower figure. Note the similarity between the figures, as suggested in Proctor
(1977b).

of the dynamo number, and since on the Sun the waves move towards the equator
we can make some deductions about the dynamics leading toα. The associated fre-
quency of oscillation also emerges from the calculation andis comparable with the
turbulent diffusion time.

There is an interesting near symmetry, associated with the adjoint dynamo problem,
between dipole (quadrupole) modes withα,u, and quadrupole (dipole) modes with
α,−u (Proctor, 1977b). This is illustrated in Figure 1.10, whichshows growth
rates for a particular dynamo model. The figures for the different parities are very
similar, though thex–axis, measuring the dynamo number is reversed in the right-
hand figure.

We can relate these results to the well known butterfly diagram of the solar cycle
(shown in Figure 6.3, page 290 and discussed in Section 6.1).If we identify the
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sites of sunspot activity with maxima ofB, (since we believe that sunspots are man-
ifestations of large toroidal fields through the magnetic buoyancy instability), then
the equatorward propagation of the disturbances will lead to a picture like the obser-
vations.

These global models of dynamo action have been superseded bymodels in which the
shear is concentrated just below the convective zone of the sun, and so theα–effect
is separated spatially from the shear. This “interface model” (Parker, 1993), which
also leads to dynamo waves, will be discussed in detail alongwith its dynamical
consequences in Chapter 6.

1.6. LARGE MAGNETIC REYNOLDS NUMBERS

Let us now turn to the evolution of magnetic fields under the induction equation
at large magnetic Reynolds number, as explained in Section 1.2.4. We will begin
by giving a formal definition, before discussing the motivation for such studies and
presenting various examples. For further information and more references than can
easily be provided here see the reviews Childress (1992), Bayly (1994), Soward
(1994), Childress & Gilbert (1995) and Gilbert (2003).

Suppose we have a given incompressible flowu with a typical length scaleL and ve-
locity scaleU , and the magnetic diffusivity isη. Then after non-dimensionalisation
using these scales, the induction equation (1.14) becomes

∂tB + u · ∇B = B · ∇u + ε∆B , (1.116a)

whereε−1 ≡ Rm = UL/η is the magnetic Reynolds number, and

∇ · B = 0 , ∇ · u = 0 . (1.116b,c)

For a given flowu and anε > 0, dynamo action may take place, the fastest grow-
ing magnetic field mode having an exponential growth rateγ(ε); for example for a
steady flow

B(x, t) ∝ b(x)eσt, γ = Re {σ} . (1.117)

The flowu is a fast dynamoif the fast dynamo exponent

γ0 ≡ lim
ε→0

γ(ε) (1.118)

is positive; otherwise it is aslow dynamo. For a fast dynamo, magnetic field growth
occurs on the turnover time-scale of the underlying flowu (on which we first non-
dimensionalised), independently of molecular diffusion.A slow dynamo operates
on a slower, diffusion-limited time-scale, as we shall see in some examples below.
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Why study fast dynamos? Before answering this question, it is best to widen the
scope of our enquiry: our interest is in dynamo mechanisms (fast and slow) at large
Rm, the structure of magnetic fields, and the saturation of dynamo instabilities (in
which case (1.116a) must be supplemented by an equation foru). Mathematically,
the limit Rm → ∞ or ε → 0 in (1.116a) is a singular limit asε multiplies the
highest derivative, and so this requires careful treatmentby numerical codes, or by
asymptotic means. Taking this limit allows a clear subdivision of dynamos and
unstable magnetic modes into different families, as we shall see. This classification
can be useful even ifRm is not particularly large in an application; however in
many astrophysical applicationsRm is very large, and dynamo processes do appear
to operate on fast time-scales; for example in the SunRm is of the order of108 and
the magnetic field oscillates on the fast, 11-year Solar cycle.

Finally, developing mathematical tools to cope with fast dynamos is a considerable
challenge with wider application, for example to vorticityand passive scalar trans-
port in complex flows (e.g., Reyl, Antonsen & Ott, 1998; Feredayet al. 2002). The
induction equation (1.116a) is challenging because the behaviours asε → 0 and
for ε = 0 are markedly different at large times. If one simply setsε = 0, then the
induction equation corresponds to advecting a vector fieldB in the given flowu,
field lines being frozen in the fluid. The field will gain finer and finer scales, and the
magnetic energy will grow because of field stretching. Because of this reduction of
scale, there are no well-behaved eigenfunctions for a general flow in the caseε = 0
(Moffatt & Proctor, 1985). Now suppose diffusion is introduced: this can have very
dramatic effects because of the fine scales in the field. For example for a typical pla-
nar flowu(x, y, t) = (u1, u2, 0), the magnetic energy grows indefinitely forε = 0,
but for anyε > 0 it eventually decays, in keeping with the anti-dynamo theorem for
planar flows discussed in Section 1.3.4.

In this short review we will consider examples of slow and fast dynamos in flows
and mappings, but only make passing reference to issues of dynamo saturation; these
will be taken up in Chapter 2.

1.6.1. SLOW DYNAMOS IN FLOWS

Perhaps the simplest example of a slow dynamo is the Ponomarenko dynamo (e.g.,
Ponomarenko, 1973; Gilbert, 1988; Ruzmaikin, Sokoloff & Shukurov, 1988). In
cylindrical polar coordinates(r, θ, z),

u = rΩ(r)eθ + U(r)ez ; (1.119)

this is a swirling helical flow, depending only on radiusr. Here we focus on the case
of a smooth flow, although Ponomarenko’s original paper had piecewise constantU
andΩ. Related flows were studied by Lortz (1968).
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Figure 1.11 - Magnetic field in the Ponomarenko dynamo at large magnetic
Reynolds numberRm = ε−1 forms spiralling tubes of field localised near the reso-
nant stream surface.
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We may consider a magnetic modeB = b(r) exp [imθ + ikz + σt], classified by
wavenumbersm andk. In this case the induction equation (1.116a) forbr andbθ
becomes

[σ + imΩ(r) + i k U(r)] br = ε
[
(∆m − r−2) br − 2 imr−2bθ

]
, (1.120a)

[σ + imΩ(r) + i k U(r)] bθ = rΩ′(r) br + ε
[
(∆m − r−2) bθ + 2 imr−2br

]
.

(1.120b)

We can drop thebz equation asbz can be reconstructed from the condition∇·B = 0.
The basic mechanism can be seen in these two equations, and can be described
as ofαω-type. The stretching of radial field by the gradient of angular velocity
Ω′(r) generatesbθ field in equation (1.120b) (anω–effect), while diffusion ofbθ field
in curved geometry can generate radial field by the last term in (1.120a) (broadly
speaking, anα–effect).

To obtain formulae for growth rates at smallε, we rescale, so as to capture the fastest
growing modes, setting

m = ε−1/3M , k = ε−1/3K , r = a+ ε1/3s . (1.121a,b,c)

Here we are seeking a mode localised at a radiusa (whose significance we will
discover shortly) in the interior of the fluid. We scale the growth rate as

σ = ε−1/3σ0 + σ1 + ε1/3σ2 + · · · , (1.122)

and for the field, set

br = ε1/3br0(s) + · · · , bθ = bθ0(s) + · · · , (1.123a,b)

These expansions are then to be substituted into (1.120a,b)and the flow field (1.119)
also Taylor-expanded aboutr = a in powers ofs. When this is done, corresponding
powers ofε are equated, to give at the leading two orders:

σ0 + iM Ω(a) + iK U(a) = 0 , (1.124a)

iM Ω′(a) + iK U ′(a) = 0 , σ1 = 0 . (1.124b,c)

The first simply fixesσ0 as purely imaginary, advection of the magnetic field mode
by the flow at radiusa. The second condition implies that a mode with given(m, k)
tends to localise at the radiusa where the shear of the flow is aligned with field
lines, assuming such a radius exists; if it does not, then we may expect the mode to
localise at a boundary.

At the next order we obtain from (1.120) coupled parabolic cylinder equations,
which may be written in the form

(c0 + i c2 s
2 − ∂2

s ) br0 = −2 iM a−2 bθ0 , (1.125a)

(c0 + i c2 s
2 − ∂2

s ) bθ0 = aΩ′(a) br0 , (1.125b)
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wherec0 = σ2 + M 2/a2 + K2 and2c2 = MΩ′′(a) + KU ′′(a). These coupled
differential equations can be rewritten as

P+P−br0 = 0 , (1.126a)

with
P± ≡ (c0 ± d + i c2 s

2 − ∂2
s ), d ≡ (−2 iM Ω′(a)/a)1/2 . (1.126b,c)

The parabolic cylinder operatorsP+ andP− commute and so the solution forbr0 is
a linear combination of solutions to the two equationsP±br0 = 0. Putting these into
canonical form gives [

∂2
σ − (1

4
σ2 + c±)

]
br0 = 0 , (1.127)

with σ = s(4 i c2)
1/4 , c± = (c0 ± d)/(4 i c2)

1/2 , (1.128a,b)

and solutions that decay fors→ ±∞ exist only if c± = −j − 1
2

for j = 0, 1, 2, . . ..
This gives eigenvalues of the original dynamo problem.

Finally returning to the original variables gives leading order growth rates,

γ ≡ Reσ ' ∓
√
ε|mΩ′(a)|/a− (j + 1

2
)
√
ε|mΩ′′(a) + kU ′′(a) − ε(m2/a2 + k2) .

(1.129)
This formula was derived form, k = O(ε−1/3), but is in fact valid for allm, k. The
fastest growing modes have scalesm, k = O(ε−1/3) andγ = O(ε1/3), and so this
provides a slow dynamo. The resulting magnetic fields have spiralling tubes along
which the field is approximately directed; for example, anm = 2 mode is illustrated
schematically in Figure 1.11.

An important feature of the formula (1.129) is that the first two terms scale in pre-
cisely the same way withm (andk) andε, while the last term can always be made
subdominant at smallε by takingm (andk) small enough. Taking the upper sign,
andj = 0, for a dynamo to occur at largeRm for some mode(m, k) it follows that
the first, positive term must dominate the second, negative term, and this only oc-
curs at the given resonant surfacer = a provided the purely geometrical condition,
obtained with the help of (1.124a),

r

∣∣∣∣
Ω′′(r)

Ω′(r)
− U ′′(r)

U ′(r)

∣∣∣∣ < 4 , (1.130)

is met there. One can write down flows for which this is not satisfied, and so which
would not be dynamos at largeRm, even though they appear well-endowed with
helical streamlines.

This example can be generalised away from strictly circulargeometry to allow more
general stream surfaces (Gilbert & Ponty, 2000). As an example of an application,
the resulting theory gives excellent predictions of the instability threshold for these
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Ponomarenko modes in a study (Plunian, Marty & Alémany, 1999) of dynamo in-
stabilities in model nuclear reactor flows, even at moderateRm. Such modes can
also occur in convective cellular flows (e.g., Ponty, Gilbert & Soward, 2001). A
smooth flow of the form (1.119) can give slow dynamo action, but if Ω(r) andU(r)
have discontinuities at some radiusr = a, then fast dynamo action can occur, with
growth ratesγ = O(1) for modes withm, k = O(ε−1/2) (Gilbert, 1988); we will not
discuss this further here. Some aspects of the saturation ofsmooth Ponomarenko dy-
namos are studied in Bassom & Gilbert (1997) forRe � Rm � 1: the flow adopts
a layered structure, with solid body rotation in a broad region surrounding the radius
a and where theα–effect and field are concentrated. Outside are thin layers where
the shear andω–effect are significant.

These Ponomarenko modes, with spiralling tubes of field alternating in direction, are
rather localised; for example a mode would sit in one cell of aconvective flow. They
are far from the mean-field dynamos which are traditionally studied by means of an
α–effect and discussed in Section 1.5. The best laminar flow tostudy which allows
such large-scale field generation is the Roberts (1970) flow,which was introduced
in Section 1.4,

u = (sinx cos y,− cosx sin y,K sinx sin y) , K =
√

2 . (1.131a,b)

This is a Beltrami flow, with vorticity∇ × u = Ku proportional to the flow itself.
It thus provides a steady solution to the Euler equation, andis a member of the ABC
family of flows; the general ABC flow is given by

u = (C sin z + B cos y, A sinx+ C cos z, B sin y + A cos x) , (1.132)

whereA, B andC are parameters (and (1.131a,b) is obtained by settingA = B =
2−1/2,C = 0, rescaling and rotating axes throughπ/4). At low Rm the Roberts flow
provides anα–effect dynamo, destabilising large-scale magnetic field modes (e.g.,
Moffatt, 1978). The field is dominated by diffusion; the flow is a small perturbation
to the field on the scales of the flow, but one which has a large-scale destabilising
effect. A nonlinear study within this lowRm model reveals an inverse cascade of
magnetic energy to large scales (Gilbert & Sulem, 1990).

At large Rm, however, the field tends to localise on stream surfaces. Theflow
is independent ofz; there is an array of square helical cells, in which the flow is
spiralling, where dynamos can exist. However the key new feature is the network
of hyperbolic stagnation points(x, y) = (nπ,mπ), joined by straight-line sepa-
ratrices: new magnetic modes appear, localised on this network. A modeB ∝
exp(i k z + σ t) with wavenumberk in z has growth rate

γ ≡ σ = αk − εk2 , α = −1
2
kε1/2G , G ' 1.0655 . (1.133a,b,c)

(Childress, 1979; Soward, 1987). This is valid fork = O(1), but the growth rate
increases withk, and the above equation is suggestive of a maximum growth rate
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(a)

(d)

(b)

(c)

(e)

Figure 1.12 - The stretch–twist–fold dynamo: an initial flux tube (a), isstretched
(b), twisted (c) and folded (d), to obtain a doubled flux tube.(e) a folded flux tube
after two STF cycles: note that only the centre line of the tube is shown.

γ = O(1) for k = O(ε−1/2), that is, a fast dynamo. A delicate analysis (Soward,
1987) shows that the maximum growth rate is in fact given by

γ = O((log log ε−1)/ log ε−1) , k = O(ε−1/2/
√

log ε−1) . (1.134a,b)

Is this a fast dynamo? Not technically, as the growth rate still goes to zero asε→ 0
and so the dynamo is slow. However the decay is only logarithmic in ε, and what is
a logarithm between friends? In view of our opening remarks in this chapter, this is
therefore still an interesting and important slow dynamo mechanism; for example,
similar Roberts modes are found in the study of Plunian, Marty & Alémany (1999).
One important feature to note is that the fastest growing magnetic field modes have a
very small lengthscale inz. They are extended inx andy (unlike the Ponomarenko
modes), but the magnetic energy is entirely at the diffusivescales,k ' O(ε−1/2). In
the Roberts dynamo diffusion is still playing a crucialrôle in the amplification pro-
cess, and the field has to adopt diffusive scales to benefit. This should be contrasted
with the fast dynamos below, where the magnetic fields have typically a power-law
spread of energy over a range of scales, from the full scale ofthe flow down to
diffusive scales.

1.6.2. THE STRETCH –TWIST–FOLD PICTURE

In so far as finding fast dynamos, the problem with the flows so far discussed is that
diffusion is crucially involved in the amplification process. In fact, in rough terms,
these steady flows have dynamos of anαω-type at largeRm. Field perpendicular to
stream surfaces is stretched out along stream surfaces by the flow, giving strong field
parallel to stream surfaces (anω–effect); in curved geometry weak diffusion acts
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(a) (b)

(c) (d)

Figure 1.13- Cross sections of the torus (a) initially, and (b) after oneSTF iteration,
(c) two iterations and (d) three iterations. Shading indicates regions containing field,
and white is field-free fluid.

on this parallel field to generate perpendicular field (anα–effect). Thisαω-cycle
allows the field to grow and the dynamo to operate. To avoid thedynamo process
being limited by diffusion as in these examples, it is necessary for advection by the
fluid flow to do all the amplification itself without relying ondiffusion. The simplest
picture of how this may be achieved is in the stretch–twist–fold (STF) dynamo (see
Section 1.2.3; Vainshtein & Zeldovich, 1972), depicted in Figure 1.12 (see also
Figure 1.2).

In this figure the flow is not given explicitly. Instead the action of the flow is shown
on a tube of field frozen into the fluid; we may think of the perfectly conducting case
ε = 0 for the moment. The initial tube (a) is stretched to twice itslength, its cross
section being halved, giving (b). This doubles the field strength and so multiplies
the energy by four. The field is then twisted into a figure-of-eight (c) and folded (d),
to give a tube of similar structure to the original in (a). If this process is repeated,
with a time periodT = 1, then the energy at timet = n will be En = 22nE0,
corresponding to a growth rateγ = log 2. Now let us reintroduce weak diffusion;
this will begin to play arôle when the field scale becomes of orderε1/2, and will
begin to smooth and reconnect the field (Moffatt & Proctor, 1985). Because the
action of the STF moves has been to bring tubes of field largelyinto alignment, one
would expect diffusion not to lead to a wholesale destruction of field, but simply to
smooth the fine structure in the field, givingγ ' log 2 for 0 < ε� 1 and so a fast
dynamo withγ0 ' log 2 .

There are a number of problems with realising the STF picturein practice. The first
is that it is not easy to specify a fluid flow to apply the STF moves (Moffatt & Proc-
tor, 1985). But even in such a flow (or iterated mapping), the field rapidly becomes
unmanageable (Vainshteinet al., 1996), for the reasons indicated schematically in
Figure 1.13. Starting with a magnetic field (black) in a torus, whose cross section
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(a) (b)

Figure 1.14 - Eigenfunctions of Otani’s flow fork = 0.8 and (a)ε = 5 × 10−4

and (b)ε = 5 × 10−5. The magnitude of the magnetic field is shown, with black
indicating zero field. (See color insert.)

is shown in (a), the doubled up field in (b) will entrain field-free fluid (white) and
so some field will lie outside the original torus. As the stretch, twist, fold opera-
tions are repeated (c,d) the bundle of field lines and entrained fluid will increase in
volume until the whole fluid volume contains strands of field,and it is necessary to
understand the global nature of the fluid flow and folding of field, a problem that has
not been addressed. The field lines also become tangled up in acomplicated fashion
(see Gilbert, 2002), with poorly-understood implicationsfor diffusion of field.

Nonetheless, the STF moves provide a useful picture of how a fast dynamo with
growth rateγ0 ' log 2 might operate. This is only apicture, hard to realise in
practice (for example in a convective fluid flow!), but informative nonetheless. The
key points to bear in mind are: first, the flow has chaotic particle trajectories, as the
length of the field lines in the tube doubles with each period.In fact Lagrangian
chaos in a smooth fluid flow is a necessary ingredient for fast dynamo action; tech-
nically the topological entropyh of the flow must be positive (Finn & Ott, 1988;
Klapper & Young, 1995), as we discuss further below. Such chaotic flows are easy
to realise; but the second key ingredient in a fast dynamo is constructive alignment
of magnetic field vectors. The STF moves tend to bring fields close with similar
orientation, which minimises the possible destruction of field through magnetic dif-
fusion.

1.6.3. FAST DYNAMOS IN SMOOTH FLOWS

The numerical study of dynamo action in chaotic flows began with investigation of
steady ABC flows (1.132) (Galloway & Frisch, 1986). However these are generally
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three-dimensional, having complex stream line topology, and solving the induction
equation is computationally intensive. It is easier to dealwith two-dimensional flows
u(x, y, t) (independent ofz), and the best-studied examples are essentially variants
of (1.131), for which time dependence is introduced and results in a breaking up
of the separatrices joining hyperbolic stagnation points,to give chaotic layers. One
example is the flow of Otani (1993),

u(x, y, t) = 2 cos2 t (0, sinx, cosx) + 2 sin2 t (sin y, 0,− cos y) , (1.135)

which is similar to an example studied by Galloway & Proctor (1992) and discussed
in Section 1.4.1. Growing magnetic fields take a Floquet form

B(x, y, z, t) = ei k z+σt b(x, y, t) , (1.136)

in whichb is periodic in time, period2π. Thez-wave numberk is a parameter and
for each diffusivityε, the mode with maximum growth rate may be found. Numeri-
cal study (Otani, 1993) shows good evidence for fast dynamo action with

γ0 ' 0.39 , k ' 0.8 . (1.137a,b)

Note that the value ofk at which growth rates are maximised does not depend on
ε; the magnetic field has a large-scale component, unlike in the slow Ponomarenko
and Roberts dynamos discussed above.

However while numerical studies show that the convergence of γ(ε) to γ0 is rapid
asε → 0, the magnetic eigenfunctions become more and more complicated, as in-
dicated in Figure 1.14. This shows a snapshot of magnetic energy (averaged overz)
plotted as a function of(x, y). In the centre are bands of field, resulting from chaotic
stretching and folding in the flow in the(x, y)–plane. In the large black, field-free
regions the flow has islands of KAM surfaces with insignificant stretching.3

The action of the flow is to fold field in the plane, giving the belts of field dominat-
ing the centre of the picture. This would not give any kind of constructive alignment
of field vectors, however, without the shearing motion inz, which advects field up
and down, giving changes of sign of field by virtue of theei k z dependence onz; see
(1.136). By this means bands in the centre of the picture havefields that are largely
aligned. This ‘stretch–fold–shear’ mechanism amplifies a large-scale field compo-
nent, while creating a cascade of fluctuations to small scales; these fluctuations are
smoothed out by diffusion, which plays a relatively passiverôle.

While the above flow of Otani (1993) has been written down without any obvious
link to real astrophysical fluid flows, the above mechanism ofstretching and folding

3 KAM=Kolmogorov-Arnold-Moser: this refers to regions where trajectories are not chaotic and
lie on surfaces.
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Figure 1.15- A baker’s map with uneven stretching, as described in the text (figure
taken from Gilbert 2006).

in the (x, y) plane and shearing inz is very natural and can occur, for example, in
convection. Two-dimensional time-dependent convective eddies can give chaotic
folding in the plane containing the roll axes, while the influence of rotation (natural
in an astrophysical body) can drive flows along their axes (Kim, Hughes & Soward,
1999; Ponty, Gilbert & Soward, 2001).

The flows of Otani (1993) and Galloway & Proctor (1992) have also been studied in
dynamical regimes, where the given fluid flow is now driven by aprescribed body
force until the field grows and becomes dynamically involvedthrough the Lorentz
force. Studies indicate that the field saturates through suppression of the Lagrangian
chaos and alpha effect in the flow, although there is also someevidence that an
inverse cascade of magnetic energy to large scales may occurin spatially extended
systems, on long time-scales; see for example, Maksymczuk &Gilbert (1998) and
Cattaneoet al. (2002).

1.6.4. FAST DYNAMOS IN MAPPINGS

Studying fast dynamo action in flows such as Otani’s above, oran ABC flow, is ex-
tremely difficult. The problem is that it is not just the individual Lagrangian trajecto-
ries that are important, but how ensembles of trajectories lead to folding of magnetic
field. Most progress in understanding has been obtained by studying dynamo action
in models for which the fluid flow is replaced by a mapping.

Perhaps the simplest mapping that can be considered is the stacked Baker’s map
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with uneven stretching (Finn & Ott, 1988): this discontinuous map of a square, say
[−1, 1]2, to itself is depicted in Figure 1.15. The mapM is defined by a parameter
α with 0 < α < 1 and we setβ = 1 − α. The unit square is cut at a horizontal level
y = −1 + 2α into two pieces. The first is stretched by a factorα−1, changing its
dimensions in(x, y) coordinates from2 × 2α to 2α × 2; see (b). The second piece
is stretched by a factorβ−1, going from2 × 2β to 2β × 2. Finally the two squares
are reassembled in (c), stacked together, and this completes the mapping process.
This mapping can be thought of as a simplified model for the STFpicture, giving
the doubling up of the tubes of flux in the presence of uneven stretching (Finn &
Ott, 1988). The mapM may be written as

M(x, y) =

{
(α(x+ 1) − 1, α−1(y + 1) − 1) for y < Υ ;

(β(x− 1) + 1, β−1(y − 1) + 1) for y ≥ Υ ,
(1.138)

with Υ = −1 + 2α ≡ 1 − 2β.

We imagine starting with a fieldB(x) = b(x) ey and using the Cauchy solution, it
may be checked that the action ofM is to replaceb(x) with the fieldTb, where

Tb(x) =

{
α−1b(α−1(x+ 1) − 1) for x < Υ ;

β−1b(β−1(x− 1) + 1) for x ≥ Υ .
(1.139)

T is called the dynamo operator (without diffusion). Ignoring diffusion for the
present, we may imagine iterating this operator on an initial unit magnetic field
b0(x) = 1, possessing fluxΦ0 = 2 through any horizontal liney = constant. Apply-
ing the map once yields two rectangles of field, one of width2α and strengthα−1,
and one of width2β, strengthβ−1: the fluxΦ1 = 4 has been doubled. Iterating the
map we see thatΦn = 2n+1. If we can ignore the effects of diffusion we have a
dynamo with growth rateγ0 = log 2 as in the STF picture, if we agree that each iter-
ation of the mapping takes unit time. We would expect the effect of weak diffusion
to be unimportant, as the fields that emerge through repeatedapplication ofM are
all pointing in the same direction (Finn & Ott, 1990).

The key feature that the stacked Baker’s map highlights is that the rate of growth of
flux can be different from the Liapunov exponent, a popular measure of how chaotic
a system is. To measure this quantity we imagine how ay-directed vector attached
to a typical point(x, y) is stretched as the mapM is iterated. Since on average a
proportionα of the iteratesMn(x, y) will lie in y < Υ, where the vector will be
stretched by a factorα−1, and a proportionβ in y > Υ, with stretching byβ−1, the
Liapunov exponent will be

λLiap = α logα−1 + β log β−1 . (1.140)

This is lessthan the fast dynamo growth rateγ0 = log 2, except in the special case
α = β = 1/2, of even stretching. This at first seems surprising, as magnetic field
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is composed of vectors, and surely bothγ0 andλLiap measure the stretching rate of
vectors! In fact there is a difference in the averaging processes involved. In the
case of magnetic field, in computing a flux, we are weighting more heavily the more
stretched vectors, by integratingb(x) dx, whereas a Lipaunov exponent involves a
typical point, with weightingdx in the sense of a measure. Equivalently, stronger
magnetic fields tend to concentrate in the regions of higher stretching, and so give a
different weight in the average.

A more useful quantity to measure as a diagnostic in a fast dynamo is the rate of
stretchinghline of material lines (which could be thought of as field lines in the ab-
sence of diffusion). If the reader experiments with placinga line, sayx = y in the
square[−1, 1]2 (see Figure 1.15), and then iterating the mapM on all the points con-
stituting the line, he or she will soon find that the line length approximately doubles
with each iteration, giving an asymptotic valuehline = log 2, which is the same as the
fast dynamo growth rateγ0. Like magnetic field, material lines tend to concentrate
in the regions of high stretching (with the consequent inequality λLiap ≤ hline).

This then suggests the general result that the fast dynamo exponentγ0 should not
exceedhline. In fact in two dimensions the exponenthline may be identified with the
topological entropyh, and so the result one might expect is

γ0 ≤ h ; (1.141)

this was argued by Finn & Ott (1988) and proved rigorously (under some natural
smoothness conditions) by Klapper & Young (1995). The fact that γ0 can be less
thanh is easily understood: the Baker’s map in (1.138) above givesperfect align-
ment of field in the vertical: all vectors point in the+y direction with our given
initial condition. If instead there is folding of field in a more realistic scenario,
which can be modelled using a Baker’s map with several cuts and rotating one or
more rectangles of field at each iteration, the fluxΦn, a signed quantity, will tend to
grow less quickly than the rate of stretching of material lines. This aspect can also
be characterised by acancellation exponent(Du et al., 1994). If there are no sign
changes in the field, the cancellation exponent would be zero, and we would have
γ0 = h.

While the uneven Baker’s map model is an interesting and useful way to explore
these considerations of uneven stretching and cancellations, it suffers from the fact
that it is derived from the STF picture, which has the shortcomings and problems
mentioned above. Note that forα = β = 1/2 the Baker’s map is trivial (doubling
all field vectors and no cancellations), and so probably too simple to model what
occurs in a typical fluid flow!
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Figure 1.16 - The stretch–fold–shear map. (a) Magnetic field depending on z is
stretched and folded with a Baker’s map in the(x, y)–plane to give (b). In (c) the
field orientation is shown in the(x, z)–plane, which after the shear operation gives
(d) (figure taken from Gilbert, 2002).
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1.6.5. THE STRETCH –FOLD –SHEAR MODEL

Another idealised model that does capture some of the amplification mechanism
seen in Otani’s (1993) flow and similar flows, is the stretch–fold–shear (SFS) model
of Bayly & Childress (1988, 1989). This model consists of a number of components.
The first is a folded Baker’s map (with uniform stretching), which maps the square
−1 ≤ x, y ≤ 1 to itself, by stretching and folding. This is like the process depicted
in Figure 1.15 withα = β = 1/2, except that the second rectangle is rotated through
π before reassembly, representing the folding of a sheet of field. The map is defined
by

M1(x, y, z) =

{
(1

2
(x− 1), 1 + 2y, z) for y < 0 ;

(1
2
(1 − x), 1 − 2y, z) for y ≥ 0 .

(1.142)

The action of this on a magnetic field

B(x, y, z) = ei k zb(x) ey + complex conjugate (1.143)

is shown in Figure 1.16(a,b), giving one fold of field in the(x, y)–plane. If this map
were now simply repeated, the effect would be to obtain ever finer alternating bands
of magnetic field in this plane, vulnerable to diffusion. There is plenty of stretching,
but no constructive folding. The flux through a linex = constant would become
zero after one iteration and remain so thereafter. In this case we would haveγ0

negative, buthline = log 2.

Thus a second ingredient is required, a shear in thez-direction, shown in a top-down
view going from (c) to (d). The action of the shear is to bring upward pointing field
(+) approximately into alignment with other upward fields, andsimilarly downward
pointing field (−). This corresponds to the mapping

M2(x, y, z) = (x, y, z + αx) , (1.144)

whereα is a shear parameter (not related to the previousα, and not intended to
imply an α–effect!). The alignment is only approximate, but intendedto capture
the basic mechanism observed in flows such as Otani’s, in which belts of field are
drawn out and folded in the(x, y)–plane, and then sheared in thez-direction (Bayly
& Childress, 1988).

In this way we obtain the SFS dynamo model: the field is first stretched and folded
(by M1) and then sheared (byM2). Acting on the complex fieldb(x) in (1.143)
above gives a fieldTb, with

Tb(x) =

{
2e−i α k x b(1 + 2x) for x < 0 ;

−2e−i α k x b(1 − 2x) for x ≥ 0 .
(1.145)
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T is again the dynamo operator without diffusion. For diffusion we employ suitable
boundary conditions and allow the fieldb(x) to diffuse for unit time according to
∂tb = ε∂xxb. Possible boundary conditions (only employed atx = −1, 1) include
insulating (I), perfectly conducting (C) and periodic (P),

b(1) = b(−1) = 0 (I) , ∂xb(1) = ∂xb(−1) = 0 (C) , b(x) periodic (P).
(1.146a,b,c)

The diffusion step may be written as mappingb toHεb, whereHε is another operator
involving heat kernels (for further details see Gilbert, 2002, 2004).

Finally the SFS dynamo operator with diffusion is writtenTε = HεT . The magnetic
field is most easily discretised using Fourier series, and eigenvaluesλ for Tεb = λb
sought numerically using matrix eigenvalue solvers. If themapping and diffusion
are assumed to take a time unity, then the corresponding magnetic growth rate is

σ = log λ , (1.147)

and we refer toλ as the growth factor. An eigenvalueλ then corresponds to a grow-
ing magnetic mode provided that|λ| > 1. Our aim is to understand the properties
of eigenvalues ofTε in the limit asε → 0. If eigenvalues remain bounded above
|λ| = 1 in the limit, then the SFS model is a fast dynamo.

Figure 1.17(a,b,c) shows the modulus|λ| of the leading eigenvaluesλ as a function
of α (with k = 1 set without loss of generality) for the (I), (C) and (P) boundary
conditions given above, atε = 10−5. We see that it is necessary in all cases to
increase the shear parameterα above aboutπ/2 to obtain growing modes. There
has to be sufficient constructive alignment for the dynamo tooperate.

We also see that the modes with the larger values of|λ|, certainly|λ| > 1, are robust
to the kinds of boundary condition employed, though the picture is rather different
for marginal and decaying modes with|λ| ≤ 1. Further numerical study (not set
out here) indicates that the more robust eigenvalues, with|λ| > 1, appear to show
convergence to positive values asε → 0, although individual magnetic modesb(x)
show increasingly fine structure in this limit. Thus there isgood evidence for fast
dynamo action in the SFS model (Bayly & Childress, 1988, 1989).

This leaves open the mathematical question: how can we provefast dynamo action,
and obtain some information about these growth rates for small positive diffusivity,
0 < ε� 1 ? We need to set out a sensible problem for zero diffusion, andthen treat
diffusion as a perturbation. The key idea of Bayly & Childress (1989) is to note that
while the (diffusionless) operatorT tends to reduce the scales of a magnetic field
and generally has no eigenfunctions, its adjointT ∗ (in L2), given by

T ∗c(x) = e−i α 1

2
(x−1)c

(
1
2
(x− 1)

)
− e−i α 1

2
(1−x)c

(
1
2
(1 − x)

)
, (1.148)

instead tends to expand scale and average.T ∗ can possess smooth eigenfunctions
even at zero diffusion, unlikeT .
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Figure 1.17 - Moduli of eigenvalues|λ| plotted againstα for the SFS model. The
boundary conditions are (a) insulating, (b) perfectly conducting and (c) periodic,
with ε = 10−5. In (d) eigenvalues are obtained using a power series andε = 0.
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If we seek an eigenfunctionT ∗c = λc, and expand the functionc(x) in a basisxn,
that is as a power series about the origin, we obtain a matrix for T ∗ whose eigen-
values may be found numerically. Figure 1.17(d) gives growth factors obtained
in this way for zero diffusion. The results are very close to those obtained in Fig-
ure 1.17(a,b,c) in the presence of weak diffusion, particularly for larger values of|λ|.
Plainly most branches in Figure 1.17(d) are relatively robust to diffusion, though this
depends on boundary conditions and the size of|λ|.
One branch that shows particular sensitivity to diffusion and boundary conditions is
the horizontal branch in 1.17(d), for which the adjoint eigenfunction of (1.148) is
given analytically by

c(x) = ei α (x−1) − ei α (1−x) = 2 i sinα(x− 1) , λ = ei α . (1.149a,b)

This branch only survives for conducting boundary conditions. Current research
(Gilbert, 2004) is aimed at understanding the effects of diffusion and boundary con-
ditions in the SFS model. The aim is to be able to use perturbation theory to write,
for a given branch and value ofα,

λ(ε) ' λ(0) + Cεq , (1.150)

whereλ(0) is the complex growth factor obtained by means of a power series for
zero diffusion, as shown in Figure 1.17(d). The termCεq is the diffusive correction,
which is dependent on the structure of the mode and boundary conditions, andq > 0
is the condition on the exponentq for the branch to survive the effects of diffusion.


