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Classification of dynamos
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Dynamos can be classified into various categories:

• Kinematic or dynamic 

• Slow or fast

• Large-  or small-scale



Kinematic vs. dynamic
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A kinematic dynamo is one for which the magnetic field evolves under the

induction equation, with a prescribed velocity field. It is characterised by 

exponential growth of the magnetic energy.

The magnetic field has no influence on the velocity field.

A dynamic  or  magnetohydrodynamic dynamo is one for which the magnetic

and velocity field are treated self-consistently, via solution of both the momentum

equation (the Navier-Stokes equation) and the induction equation. The magnetic

energy is maintained at a non-zero average value.

Here the magnetic field influences the velocity field via the Lorentz force.

Slow vs. fast
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This is a means of distinguishing kinematic dynamos, by consideration

of their growth rates s as the magnetic Reynolds Number Rm _ !.

If Re(s) > 0 as Rm _ ! then the dynamo is said to be fast.

If not then the dynamo is said to be slow.

For dynamic dynamos it is, in general, not possible to classify them as slow or

fast. (Although one could do this with a knowledge of the fastness of the 

underlying kinematic dynamo.)

If a dynamic dynamo is oscillatory with reversals on a fast (non-diffusive) time 

scale (the solar dynamo e.g.) then it seems reasonable to designate it as fast.



Large- vs. small-scale
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Most clear cut definition of a large-scale dynamo is one that can only operate 

in a domain that is large compared with a typical turbulent velocity scale; 

i.e. reducing the size of the box containing the dynamo will turn it off.

This makes sense in Cartesian geometry, less so for dynamos in spheres.

A small-scale dynamo has magnetic energy predominantly on scales 

comparable with those of the velocity.

More generally, a large-scale dynamo is one with significant energy on 

large scales.

The mechanisms invoked for small-scale (high Rm) and large-scale dynamos 

are very different.

Dynamos in periodic domains
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Many studies have been performed on dynamos in periodic domains:

e.g. the G.O. Roberts flow
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or the ABC flow
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Assume the magnetic field has the same periodicity as the flow. Are the 

dynamos driven by these flows small-scale or large-scale? (They are

often studied using the ideas of mean field theory.)



Magnetic field for the Roberts flow
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the field has the Fourier decomposition:
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So the field is on a scale comparable with and smaller than that of the velocity,

but also has a “large-scale” component with _ = m = 0.

So there is a mean field B(z,t), but this is also just part of the small-scale 

eigenfunction.

For the flow

Large-scale dynamos: scale separation
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Starting point is the magnetic induction equation of MHD:
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where B is the magnetic field, u is the fluid velocity and _ is the 

magnetic diffusivity (here assumed constant for simplicity).

Assume scale separation between large- and small-scale field

and flow:

where B and U vary on some large length scale L, and u and b

vary on a much smaller scale l.

where averages are taken over some intermediate scale l « a « L.



Large-scale dynamos: the mean induction equation
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Induction equation for mean field:

This equation is exact, but is only useful if we can relate E to .
0

B

where mean emf is
!"#= buE

Large-scale dynamos: fluctuating field
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Consider the induction equation for the fluctuating field:

Traditional approach is to assume that the fluctuating field is driven solely by

the large-scale magnetic field.

i.e. in the absence of B0 the fluctuating field decays.  No small-scale dynamo.

Under this assumption, the relation between b and B0 (and hence between E 

and B0) is linear and homogeneous.



Postulate an expansion of the form:
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where _ij and _ijk are pseudo-tensors.

Simplest case is that of isotropic turbulence, for which _ij = __ij and _ijk = __ijk.

Then mean induction equation becomes: 

_: regenerative term, responsible for large-scale dynamo action. 

     Since E is a polar vector whereas B0 is an axial vector then _ can

     be non-zero only for turbulence lacking reflexional symmetry 

    (i.e. possessing handedness).

_: turbulent diffusivity.

Expression for the emf

Paris: 18 March 2009

Determination of _

Coventry: 5 February 2008

_ can be rigorously determined analytically only if min(Rm, St) << 1 

(Rm = magnetic Reynolds number = UL/_,

  St = Strouhal number = ratio of correlation to turnover times).

The G term can then be neglected – so-called first order smoothing approximation.

Not satisfied astrophysically.

There are no rigorous results for the astrophysically relevant regime of 

Rm >> 1 and S = O(1).

For small correlation times _:

i.e. _ is intimately related to the helicity of the flow.

(Krause & Rädler)



Generation mechanisms
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Large-scale (mean field) dynamos rely on a lack of reflectional symmetry,

e.g. as provided by helical flows. Though the relationship between _ and 

helicity is not, in general, straightforward.

Small-scale dynamos have mainly been studied in the context of fast dynamos.

Fast dynamos require Lagrangian chaos in the flow (Vishic, Klapper & Young).

In general, astrophysical flows will be both helical and chaotic.

Chaos for GP flow

Poincaré map Lyapunov exponents



Eigenfunctions: Rm=100

Bz Jz

Growth rates



_-effect for GP flow

Courvoisier et al PRL (2006)

The kinematic _-effect
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Consider the measurement and interpretation of the kinematic _-effect.

This is typically done by measuring the mean emf resulting from the imposition of a

uniform magnetic field (or different fields in order to pick up the different components).

How big a domain is needed for sensible averaging?

Consider the relation for the standard error of the mean:

Here _ is the desired uncertainty in the mean of N independent samples, each

with standard deviation _ – thus, given _ and _, N follows. 

N represents the number of patches of size _ needed to achieve required accuracy.
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Measuring the kinematic _-effect
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Make the assumption (well verified at large Rm) that the mean emf is small

in comparison with the fluctuations. Then
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Two cases to consider:
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2. Small-scale dynamo. Then || bu! grows exponentially at the small-scale 

growth rate s.

Cattaneo & Hughes 2009

The kinematic _-effect: interpretation

In the absence of small-scale dynamo action, knowledge of _ (and _) provides

information about the growth of a field on a large scale ~ 1/k:

(*)~ 2
kks !" #

Increasing the domain size from L ~ _ will allow dynamo action to set in

when L = _/_.

However, if there is small-scale dynamo action then, by definition, there is

dynamo action when L ~ _. 

This will be essentially independent of domain size L.

Any average of the magnetic field at intermediate scales will grow with the 

same growth rate.

The growth of the magnetic field on large scales has nothing to do with that

predicted by equation (*).



A specific example

The ideas discussed above can be illustrated by consideration of a specific

model – plane layer rotating Boussinesq convection.

In particular it is possible to show the difficulties in determining an _ coefficient,

the convergence to the (small) mean being extremely slow, and also to see

that the field that emerges is not a large-scale dynamo, even in the presence of

helicity.

Dynamo action driven by rotating convection

Paris: 18 March 2009

Taylor number, Ta = 4_2d4/_2 = 5 x 105.

Prandtl number Pr = _/_ = 1.

Magnetic Prandtl number Pm = _/_ = 5.

Critical Rayleigh number for onset of convection = 59 008.

Critical Rayleigh number for onset of dynamo action " 170 000.

Cattaneo & Hughes 2006 JFM

Hughes & Cattaneo 2008 JFM
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T0 + _T

T0
_

Boussinesq convection.

Boundary conditions:    impermeable, stress-free, fixed temperature,

                                       perfect electrical conductor.

Childress & Soward 1972

Soward 1974

St Pierre 1993

Jones & Roberts 2000

Rotvig & Jones 2002

Stellmach & Hansen 2004



Rotating Boussinesq convection: averaging

Averaging is taken over horizontal planes, so the mean magnetic field takes

the form (Bx(z), By(z),0).

For Boussinesq convection, Ex and Ey are anti-symmetric about the mid-plane.

Thus a meaningful average is one over the upper (or lower) half of the domain.
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Dynamo close to marginal convection
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Problem first analysed by Soward (1974) (following Childress & Soward 1972).

Assumed E = Ta-1/2  << 1, Pr = O(1) and considered mildly supercritical convection

with
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where q(k, t) = !w(k, t)!2 .



Calculation of _ for small box, laminar convection
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Ra = 80 000

Temperature contours:

aspect ratio = 0.5

"u2# = 330 

3 components of e.m.f. vs time, calculated over upper and lower half-spaces.

_xx $ 8.5

Mean field theory: philosophy

The hope of mean field dynamo theory is to obtain information on _, _, etc.

either analytically or via “small” numerical simulations, and then to apply this

information to say something about dynamo action on a large scale.

Paris: 18 March 2009



Changing the aspect ratio
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_ = 5,                              _ = 2,      _ = 1, _ = 0.5

Ra = 80,000

Ra = 150,000

Ra = 500,000

Convective Planforms:

No field

Rotating convection: large aspect ratio
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Ra = 70,000 Ra = 150,000 Ra = 500,000
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Longitudinal emf versus time
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time

Aspect ratio = 5

Ra = 80,000

Ra = 150,000

Ra = 500,000

B0 = 0.1
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Cumulative time average of longitudinal emf
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Ra = 150,000

Aspect ratio = 5

Ra = 80,000

Ra = 500,000

B0 = 0.1

time



Longitudinal emf versus time
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Ra = 150,000

Aspect ratio = 0.5

Ra = 80,000

Ra = 500,000

time

B0 = 0.1

A Potentially Large-Scale Dynamo
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Ra = 106,  Ta = 5 x 105 

Box size: 10 x 10 x 1, 

Resolution: 512 x 512 x 97

Snapshot of temperature.

No imposed mean magnetic field.

For comparison we consider a 

case with no rotation and with

Ra = 5 x 105



Comparison of vorticity
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Ta  = 0, Ra = 5 x 105 Ta = 5 x 105, Ra = 106

Dynamo action
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Ta  = 0,  Ra = 5 x 105 Ta = 5 x 105,  Ra = 106

(x 3)

(x 3)



Horizontal power spectra

Velocity Magnetic field

rotating

non-rotating
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Conclusions
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• Plenty of local u x b. However, no coherence – spatially or temporally.

• However the overall magnetic energy grows on a fast timescale.

• Efficient dynamo action, but no evidence of large-scale dynamo action – 

  despite significant kinetic helicity. What is seen at high Rm is essentially just a

  modification to the small-scale dynamo that is present in the absence of rotation.

• Small box sizes lead to a very unrepresentative representation of the extended system.


