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A fast kinematic dynamo in two-dimensional
time-dependent flows
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A time-continuous, constant-resistivity version of the fast dynamo model introduced
by Bayly & Childress (1988) is studied numerically. The expected dynamo mechanism
in this context is described and is shown to be operative in the simulations. Exponential
growth of the fastest growing mode is observed, with the growth rate for the smallest
resistivity attempted (1/R,, = 107%) agreeing well with the Bayly—Childress model. It is
argued, based on the long- and short-wavelength behaviour of the mode for different
resistivities, that the growth rates obtained for the R, = 10* case should persist as
R, — 0.

1. Introduction

An understanding of how and when magnetic fields can be generated from the flow
of an electrically conducting fluid is important to our understanding of many problems
including the generation of the Earth’s, the Sun’s, and others stars’ magnetic fields and
the formation of coronas around the Sun and other stars. Specifically related to the
magnetic field structures of the Sun is the problem of how such fields can be produced
in the limit of infinite electrical conductivity. Magnetic Reynolds numbers R,, of 10
or higher are typical of the Sun and its corona. Magnetic field generation under these
circumstances (R, - o) is usually referred to as a fast dynamo process (Vainshtein &
Zel’dovich 1972) and has been of considerable interest in the past few years. The
existence of fast dynamos is important not only to such problems, but is also of interest
in its own right, representing a fundamental characteristic of the relationship between
magnetic fields and matter.

Several types of flows which could lead to fast dynamo action have been suggested,
as reviewed recently in Childress et al. (1990) and Roberts & Soward (1992). Among
these are steady two- and three-dimensional flows (Soward 1987) including the ‘ABC’
class of flows (Arnol’d & Korkina 1983; Dombre et al. 1986; Galloway & Frisch 1986,
Gilbert & Childress 1990; Gilbert 1991), chaotic flows resulting from overlapping
resonances (Strauss 1986), flows associated with coordinate mappings (Bayly &
Childress 1987, 1988; Finn & Ott 1988), and unsteady two-dimensional flows
(Galloway & Proctor 1992). The flows employed in the study presented here fall in this
last category, with early results originally reported in Otani (1988).

In this paper, two computer codes are used to examine the possibility of the presence
of a fast dynamo in a prescribed flow (the ‘kinematic’ fast dynamo problem). Two
flows are considered for this study: the first is a time-continuous version of the flow
examined by Bayly & Childress (1987, 1988, 1989), while the second is a closely related
variant. An advantage of the Bayly—Childress flow is that neither the flow itself nor its
vorticity contains singularities. The flow thus has physically realizable analogues, the
flow used in this study being one example. The aim of this research is to determine if
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the positive results obtained by Bayly & Childress with respect to the presence of a fast
dynamo apply to the actual flow situation corresponding to the mapping they use in
their work.

2. The equations

The evolution of the magnetic field B in the magnetohydrodynamic (MHD) dynamo
problem is governed by

%3=Vx(uxB)+77VzB, (1)
which is derived from Faraday’s law, Ampére’s law without displacement current, and
Ohm’s law. When V-u = 0, as it always is for the work presented here, (1) is equivalent
to

0B

FTin —-u-VB+ B-Vu+3V:B. 2)
In these equations, # is a constant electrical resistivity and # is a specified, two-
dimensional, time-dependent, incompressible, spatially periodic flow. We use two very
similar flows in this work,

u(x,y, ) = 2($Bsin x + Za cos x) cos? w, t + 2(£F sin y + Za cos y) sin® w,, ¢ 3
and
u(x, y,t) = 2(PFsin x + Za cos x) cos’ wy t +2(— XBsin y + Zacos y)sinw, t, (4)

with a, #, and w, being constant parameters. The system is periodic in each of the
orthogonal directions £, , and £, with periodicity length 2w in the #- and y-directions,
and 2n/k, in the Z-direction. The system is initialized with a seed field of the form
B(x,t=0) = XB,exp (ik, z), where B, and k, are constants.

The flow described by (3) is essentially identical to the one proposed by Bayly &
Childress, except that the square-wave ‘pulses’ in the flow have been smoothed so as
to be continuous in time, varying as sin® w, t and cos?® w, t. Additionally, the system itself
is essentially the same as the Bayly—Childress model, except that the electrical resistivity
7 is not turned on and off, but is instead held constant throughout the simulation. The
Bayly—Childress model is thus recast into a more realistic, physically realizable form.

The dynamo action expected of this flow is of the stretch—fold—shear variety (cf. the
mapping discussed in Bayly & Childress 1988). Figure 1 illustrates the mechanism.
Assume that, initially, the #-component of the magnetic field is non-zero when
averaged over x and y. We take this mean field as the seed magnetic field for the
dynamo action we outline here. (The term ‘mean’ magnetic field in this paper refers to
the x- and y-averaged magnetic field at a given z; the overall z-averaged magnetic field
is always zero in all the models we employ.) The field is initially and always defined to
be the real part of a function having a dependence in the z-direction of exp (ik, z); thus,
on constant-z planes separated by n/k,, the field will point in opposite directions, as
shown in figure 1(a).

The y-component of the cos®w, ¢ term in the flow given by (3) can be represented in
simplified form on each of these planes by the arrows shown in figure 1(b). This
component of the flow will tend to stretch the field, yielding the configuration depicted
in figure 1(c). The essential feature of this field is the spatial arrangement of its p-
component, displayed in figure 1(d). The strength of this generated ¥ magnetic field is
determined by the flow parameter f.
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FiGure 1. Illustration of a simplified model of the dynamo action expected to be present for the flows
employed in this study. (a) Orientation of the seed magnetic field B, on three constant-z planes. (b)
Sketch of the y-component of the flow pulse. (¢) Effect of the y-component of the flow on the seed
magnetic field. (d) Essential arrangement of the y-component of the magnetic field illustrated in (c).
(e) Sketch of the Z-component of the flow pulse. (f) Effect of the Z-component of the flow on the
magnetic field shown in (d).
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The Z-component of the cos® w, t term in (3), shown in figure 1 (e), acts simultaneously
with the y-component to push the y-component of the magnetic field up and down
between the planes illustrated. If the parameter « is adjusted appropriately (o ~ 0.5 for
k, =1 and v, = 1), the effect of the Z-directed flow will be to push similarly directed
y-components of the magnetic field into constant-z planes positioned halfway between
the original planes (figure 1 f). This new mean field B, can easily be made larger than
the original seed field B, by, for example, adjusting £, thereby producing a positive
dynamo effect. The conjecture of Finn et al. (1991) is relevant here, suggesting that the
dynamo effect should persist in the R,, > co limit. Once the mean field B, is created,
the situation is again essentially the same as figure 1(a), with the new field ready to
serve as the seed field for the next flow pulse (the sin®w, ¢ term).

It is this next pulse which distinguishes (3) and (4). When the cos?w,  flow in (4) is
rotated 90° so that £ — § and y—>— %, the result is the sin®w, ¢ flow. It follows that the
helicities of both flow pulses are the same, so we refer to cases involving flows of the
form defined by (4) as non-reversing helicity cases. Since the B, seed field on which the
sinw, ¢ flow operates is, apart from an inconsequential translation in £, similarly
rotated from the B, seed field, the actions of both pulse terms in (4) on their
corresponding seed fields are identical (within this simplified model). Note also that the
result of the action of the sin®w, pulse is to generate a mean B, field in the same
direction as the original B, seed field on which the cos® w, ¢ pulse previously acted.

In contrast, the sin®w, 7 term of the Bayly—Childress-equivalent flow, (3), is a mirror
image (£-—>—X) of the sin®w,? term in (4). We thus refer to cases involving flows
defined by (3) as reversing helicity cases. The B, field generated by the sin®w, ¢ pulse is
antiparallel to the field that existed before the application of the cos®w, ¢ flow pulse.

This simplified description of the dynamo action in our model can provide the basis
for an estimate of the magnetic field growth. Consider the effect of a single pulse flow
of the form

u(x,t) =2(fysinx+afcosx)sin*w,t for 0<1t< 7w, 5

on a seed field B(t=0) = (B,,,0,0)e'*-*. Neglecting diffusion, (2) yields
0B, @B

—y %
ot - U, oz > (6“)
B, 0B, . du,
5 = s, +B, o (6b)

The second term on the right-hand side of (6b) generates the y-component of the
magnetic field in figures 1(c) and 1(d) which is then advected in the Z-direction (figure
Le) by the first term. Equation (6a) simply yields the advection of B, by u,:

B, = B,,exp (—ik, £,(f) acos x) e'¥=?, @)
— ’ 2 ’ Sln 2&)0 t
where E(O =] di2sinw,t =1t— ,
0 2w,

which, when scaled by «, is just the maximum displacement due to u, after time 7. When
(7) is substituted into (6b) and the result integrated to t = nt/w, (one pulse duration) the
resulting y-magnetic field is

B, (t=m/w,) = Eﬁ%‘—‘l cos x exp (— ik (nt/w,) x cos x) e'*=2. ®)
0
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By averaging over x and y, we obtain an estimate of the growth of the mean magnetic

field per flow pulse:
(B(t=m|wy)), , .mf T
=—i—Jlk,—a],
B o, 0

z0 0

)

where J, is a first-order ordinary Bessel function.

3. The numerical model

Equations (1) and (2) are most easily solved in terms of the spatial Fourier
coefficients of B. Use of this type of method (spectral method) is particularly efficient
for this flow, because a Fourier mode characterized by wavenumber k = (k,, k. k,)
couples only to itself and the modes (k,+1,k,+1,k,), thus minimizing the number of
calculations required per simulation timestep Az. This also implies that the different
values of k, are independent of one another, and may be studied individually in
separate runs. Furthermore, the form of the equations allows both codes to run fully
vectorized on Cray machines.

To ensure numerical stability, a predictor—corrector method is used to advance the
magnetic fields in time. The resistive term is done implicitly. Specifically, the timestep
algorithm used for (2) is

Ba(k) = B, 4(k) +eAt Z {=i[(kFX)-u(t X)] B, q(kF %)
* —i(kFP) u(£ D] Buo(kF F)
Ti[£- B, q(k F £)] u( £ X)
iy By (kF ) u( %)}, (10a)
B,,ea(k) = (1 + 7k’ At)™' B, (k), (105)

B,(k) = Byys(k)+ At Y { —i[(k F %) u( + %)) B,eq(k T £)
F =ik F ) u(£ D] B,k TP)
T 1[)3 N Bpred(k + -f)] ll( s -f)
+il§ Bk F P u( 25}, (10¢)
B, (k) = (1 +5k*Af) ' B,(k), (10d)

where B(k) and u(k) are the Fourier transforms of B and u, and ¢ > 0.5 is required for
numerical stability. A similar set of equations is used for (1).

We used as our primary simulation code the one modelling (2), because it ran
somewhat faster than the code for (1). The code for (1) was run occasionally to verify
that both codes were operating properly. When both were run, they agreed to a very
high degree of accuracy. We also verified the codes by using them to compute V- B.
When checked, it was zero to one part in 10'2.

Normally, the codes followed all three components of the magnetic field. Note,
however, that the computation of B, and B, does not depend on B,. When B, was not
needed for diagnostic purposes or for verifying V- B = 0, it was often omitted, allowing
the code to run with a 50 % increase in speed.

4. Results

The parameters for our runs were chosen so that the simplified dynamo model
described above would be relevant. Except where otherwise indicated, the parameters
a=05,4=10,k,= 1.0, and w, = 1.0 were used, which, according to the simplified
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FIGURE 2. Plots vs. time of (a) [& lB(k)l  for the cases of reversing and non-reversing helicities;

(b) ki = [Z, k3| B(k)|2/Z,|B(k)|%2, for the cases of reversing and non-reversing helicities, and

(c) Re[B,(k=0:k,,,, =64)] ~Re[B,(k=0;k,,, = 3D}|/[Re[B,(k=0;k,,, = 64) + Im [B,(k=0;
= 64)]°]t. m—meme, reversing helicity; ——, non-reversing helicity.

model, should exhibit dynamo action. With = 2.513 x 1073, the inverse magnetic
Reynolds number, defined here as R} = yT/L?, is 107* for our case, where T = 7t/2w,
is the effective pulse length and L = 2n is a characteristic system length. The numerical
parameters Az = 0.01 or 0.005 and ¢ = (.65 were used in all the simulations discussed
here. Wavenumbers in the square region —32 < k,,k, < 32 were kept, with modes
with either k, or k, equal to +33 defined to be 0 at all times .

Typical time series obtained from our simulations are illustrated in figures 2 and 3.
After an initial transient, the magnetic field energy was observed to grow with fairly
clear exponential growth for several tens of flow pulses (figure 24). Similarly, our
simple measure of the relative participation of the various Fourier modes, the root-
mean-square wavenumber, settles down following the initial transient to a steady
pattern which oscillates in synchrony with the flow pulses. The steadiness of the pattern
indicates that the simulation has been run long enough to include fully the shortest
wavelengths followed by the simulation. Figure 2(c) suggests that enough wave-
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FiGure 3. Plots vs. time of Re[B, (k=0)] and —Im[B, (k=0)] for the reversing and non-reversing
helicity cases. Also shown for reference are the functions cos®w, ¢ and sin®w, ¢. The time designated
as t = 49.77 indicates the time at which figures 5 and 7(a) were made.

numbers were kept — when the same simulation was run with —64 <k,, k, < 64, the
relative change in the mean magnetic field was of order 107°,

The time envelopes of the real and imaginary parts of the mean field components
were observed to grow exponentially with the same growth rate as the square root of
the magnetic field energy. The components’ detailed time dependence, well after the
initial transient, is shown in figure 3. The Re[B,(k,=0,k,=0)] component shown
in the figure is equivalent to the mean £ magnetic field at z = 0 (cf. figure 1), while
—Im([B,(k,=0,k,=0)] corresponds to the mean value of B, at z = n/2k,. As predicted
by the simplified model, both components of the mean magnetic field alternate sign in
the reversing-helicity case, and never change sign in the non-reversing-helicity case.
Also as predicted by the model, extrema in the reversing-helicity case and maxima
in the non-reversing-helicity case occur for B, and B, shortly after the peaks in the
sin® w, t and cos? v, ¢ functions, respectively.

A comparison of the growth rates from the simulations with those predicted by
theory is shown in figure 4. The simulation growth rates agree quite closely with those
found by Bayly & Childress (1988) (trace b) for the lowest resistivity examined (R, =
104, trace c), with growth rates for the higher resistivities (e.g. R,, = 10%, trace d)
converging on the R,, = 10* values as the resistivity was decreased. This suggests that
the Bayly—Childress mapping model is a good representation in the large-R,, limit of
the physically realizable model we employ here. Trace (e) in figure 4 is a plot of the
growth rates from the simplified dynamo model (equation (9)) vs. a. It agrees most
closely with the other traces in the vicinity of « = 0.5, which corresponds to those
values of a which bring similarly directed magnetic fields to the same constant-z plane
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FiGURE 4. Growth rates of [Zle(k)(z]% (in units of T°1) vs. a for (a) the non-reversing-helicity case,
R, = 104, (b) the Bayly—Childress (1988) mapping, R,, = 10, (c) the reversing-helicity case, R, = 10,
(d) the reversing-helicity case, R, = 10%, and (e) the simplified dynamo model, as predicted by
equation (9).

(figure le, ). This suggests that the mechanism described by the simplified model is the
dominant dynamo mechanism for « in the neighbourhood of 0.5. Figure 4 also shows
the growth rates obtained for the non-reversing-helicity case (trace a). It too exhibits
substantial growth near « = 0.5 although, interestingly, the growth is somewhat less
than in the reversing-helicity case. One would expect the growth rate to be less in the
reversing-helicity case since, according to the simplified model, the dynamo-generated
field points in the direction opposite to the seed field of the previous flow pulse, which
would tend to produce some cancellation.

Diagnostics were installed to allow the display of greyscales of the spatial structure
of the various magnetic field components located in individual constant-z planes at
specified times. For parameters characteristic of the simplified model, the magnetic
field structures shown in figure 5 are typical. In the reversing-helicity case, the strongest
magnetic fields tend to congregate along the diagonals of the box in a series of long thin
structures. The field lines tend to be directed along the length of these structures.
Movies assembled with frames such as those shown in figures 5(a) and 5(d) show that
these structures emerge from the corners at (x,y) = (0,0) and (2n,2n) and proceed
towards the centre of the box at (x, y) = (m, 7). As the structures approach the centre,
they are stretched out along the other diagonal of the box. Additionally, oppositely
directed magnetic fields typically ‘drop in’ from above or below the fixed points
located at (x, y) = (%, ) or (0,0) respectively.

These phenomena are explained by the flow pattern in the limit of infinitesimal pulse
width (/w, > 0), shown in figure 6(a). The diagonals on which the strongest magnetic
field structures appear correspond to the boundaries of the convective cells of the flow
in this limit, while the motion, stretching, and dropping in of the structures is explained
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FIGURE 5. Greyscale plots vs. x and y at t = 49.77 for R, = 10* of (a) B, at z =0 and (b) B, at z =
nt/2k, for the reversing-helicity case, and (c) B, at z = 0 and (d) B, at z = n/2k, for the non-reversing-
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FIGURE 6. Features of (a) the reversing-helicity flow and (b) the non-reversing-helicity flow in the limit
of infinitesimally short pulses (/w,—0). The arrows depict the flow in the (x, y)-plane along the
convective cell boundaries. The dotted lines outline the boundary between positive (upward) and
negative (downward) flow in the #-direction. Note that the two cases are inherently different. The
convective cell boundary coincides with the boundary separating upward and downward flow for the
non-reversing-helicity case, and crosses through the centre of the upward and downward flow regions

for the reversing helicity case.

by the direction of the flow along these boundaries and the overall Z-component of the
flow. The most obvious effect of the finite width of the fiow pulses is the observed
swaying of the dominant field structures to either side of the infinitesimal-pulse-width

convective cell boundary.
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FIGURE 7. (a) Greyscale plot of the real part of the Fourier transform of B, at time ¢ = 49.77 for
R, = 10* The scale has been expanded to show the low-amplitude, high-k modes. The amplitudes
of these modes are approximately 1/100th those of the largest low-k modes. (b) Plot vs. |k of
|B(k, 6} |2/ 2, | B(k, 1) |? averaged over one pulse period: ¢ = 46.63 to 49.77. An average over the period
t = 25.00 to 28.14 produced a nearly identical spectrum.

The non-reversing magnetic field structure, shown in figures 5(c¢) and 5(d), exhibits
analogous features in the same zero-pulse-width limit (figure 65). Note that this flow
is intrinsically different from the reversing helicity flow of figure 6(a). Field structures
are not observed to drop in for the non-reversing-helicity case, because the main
upward and downward convection occurs in the centre of the convective cells, where
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for the reversing-helicity case.

the field is relatively weak, rather than on the convective cell boundary. This may
account for the somewhat smaller growth of the non-reversing-helicity case for & = 0.5
mentioned earlier.

A comparison of figures 5(¢) and 5(d) with 5(a) and 5(b) also reveals features
consistent with the time histories displayed in figure 3 in the vicinity of 1 = 49.77. B,
in figures 5(a) and 5(c) is predominantly positive (evidenced by the predominance of
the lighter shades of grey), having just been stretched by the £-directed flow with
sin® w, ¢ time dependence. In contrast, B, appears with both polarities in figure 5(b), as
a result of field being dropped in by flow in the z-direction arising from the onset of the
cos® w, t pulse. By and large, only a single polarity for B, appears in figure 5(d), since
what little z-directed flow occurs in the strong magnetic field regions serves only to
drop in like-directed field, according to the simplified dynamo and infinitesimal-pulse
flow models described above.

Figure 7(a) shows the Fourier space typical of runs exhibiting the dynamo effect.
The relatively solid pattern of the upper-right and lower-left arms of the X-pattern and
the checkboard pattern of the remaining arms are consistent with the localization of
the dominant magnetic field structures near the diagonals in figure 5(a). When viewed
as a movie, the angle between the arms of the X in Fourier space expands and
contracts, like a butterfly beating its wings, in concert with the rhythm of the pulsed
flow. Figure 7(b) shows the time-averaged normalized power spectrum. Two regimes
are apparent, with the transition occurring at about |k| = 20. The gradual fall-off of
~ |k|2 for |k] < 20 appears to be associated with the large-amplitude central portion
of the X in figure 7(a). Additional analysis of this spectrum is pending.

Perhaps the most important feature of the Fourier space is the relative insensitivity
of the amplitudes of the modes near k, = k, = 0 (the long-wavelength modes) to the
value of the resistivity. As the resistivity is decreased, the low-wavenumber pattern (i.e.
k.|, k,| < 7 in figure 74) at any given time changes very little. The principal difference
among Fourier space plots obtained from runs with different resistivities appears not
at low but at high k&, where, as might be expected, the arms are observed to extend
farther into the high-k regions as the resistivity is decreased. The essential spatial
structure (e.g. figure 5a) is also correspondingly insensitive to the value of the
resistivity. When compared to the higher resistivity run shown in figure 8, the spatial
structure in figure 5(a) shows better definition, but remains otherwise unchanged.
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FIGURE 9. Greyscale plot of the real part of the Fourier transform of B,
at time ¢ = 49.77 for 4y = 0.

We also find that the low-wavenumber pattern does not change at all when the
number of Fourier modes is increased from 32 to 64 when R,, = 10*. The primary
inference to draw here is that the code, although restricted in its representation of
Fourier space, is following the low wavenumbers with reasonable accuracy.

In another test, we tried exciting initially only the highest-k modes kept by our
simulation (i.e. those modes near the edge of the Fourier-space box). The magnetic field
energy is observed to grow only half as rapidly as normal until the dominant mode is
able to establish itself from stray fields. The growth rate then reverted to its original
value. The implication is that the growth of the dominant mode is driven by dynamics
at long rather than short wavelengths. This, combined with the linearity of the
equations in B and the fact that the high-k modes are typically 100 times smaller in
amplitude than the low-k modes in typical dynamo runs such as the one depicted in
figure 7, suggests that the effect of high-k modes is relatively minor.

One last test we made simply involved setting the resistivity to zero. The simulation
in this case is physically invalid, since spatial Fourier modes are excited up to the
highest k modes retained which are not properly treated by the simulation. The results
are nevertheless of interest. The arms of the X-pattern in Fourier space reach all the
way to the edge of the box in this case, and there artificially ‘bounce’ off back towards
the centre of the box (figure 9). We find, however, that the amplitudes associated with
this ‘reflection’ in Fourier space decay as the reflection propagates away from the edge,
and, more importantly, do not seem to affect the primary X-pattern associated with the
fastest-growing mode. The growth rates are only slightly different, being higher by
approximately 10%. Again, the test suggests that the impact of the short-wavelength
modes on the long-wavelength dynamo mechanism is minimal as R,, — 0.

5. Conclusions

We have conducted simulations of a physically realizable version of the
Bayly—Childress dynamo model which show a number of features strongly suggestive
of the presence of a fast dynamo. The results presented here provide compelling but
still not definitive evidence for the existence of fast dynamo action within the model.
We would like, in particular, to improve our understanding of the effects of short
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wavelengths on dynamo activity in our simulations as R,, > co. The model we employ
was designed to produce dynamo activity using a mechanism which relies on a specific
coupling of long-wavelength spatial Fourier components of the magnetic field. Within
the parameter regime most appropriate to the functioning of this mechanism (a ~ 0.5),
we obtain growth rates for the largest magnetic Reynolds number we studied (R, =
10*) which are approximately equal to those expected from the operation of this
mechanism. The growth rates obtained also agree well with those found by Bayly &
Childress from their mapping model, suggesting that their model is a good
representation of our physical model. We can say with confidence that dynamo action
exists for fairly large Reynolds numbers (R, = 10*%), since the simulation showed
effectively identical behaviour when the number of spatial Fourier modes was doubled.
Exponential growth of the magnetic field was observed both for the flow whose helicity
reversed between pulses, and for the flow whose helicity did not reverse. The long-
wavelength structure was unchanged as R,, was decreased, strongly suggesting, but not
proving, that the expected dynamo mechanism would continue to be operative as
R,, — co. Finally, two non-physical tests, one in which the simulation was initialized
with all the energy in the short-wavelength modes, and one with zero resistivity, both
suggest that the effect of short-wavelength modes on the long-wavelength dynamo
mechanism is not of important consequence as R,, — 0.
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