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The conjecture of Vainshtein & Zel’dovich (1972) concerning the existence of a fast
dynamo (i.e. one whose growth rate is independent of magnetic diffusivity % in the
limit #—0) is discussed with particular reference to (i) the stretch—twist—fold cycle
which can double the strength of a magnetic flux tube, and (ii) the space-periodic
Beltrami flow of maximal helicity, which has been shown to be capable of space-
periodic dynamo action with the same period as the velocity field, by Arnold &
Korkina (1983) and by Galloway & Frisch (1984). The topological constraint
associated with conservation of magnetic helicity is shown to preclude fast dynamo
action unless the scale of the magnetic field is almost everywhere of order 7t as 70
in this case, the field structure is severely singular in the limit. A steady incompressible
velocity field, quadratic in the space variables, is shown to mimic the action of the
stretch—twist—fold eycle, and is proposed as a plausible candidate for fast dynamo
action.

1. Introduction

The term ‘dynamo action’ in magnetohydrodynamics is generally used to describe
the systematic and sustained generation of magnetic energy as a result of the
stretching action of the velocity field u(x, t) on the magnetic field B(x, ). This action
is described by the induction equation

oB .
E=VA(u/\B)+17VB (V-B=0), (1.1)
where 7 is the magnetic diffusivity of the fluid (see e.g. Moffatt 1978).

In a purely kinematic approach to the dynamo problem, the velocity field u is
regarded as known, and in particular the back-reaction of the magnetic field on u (via
the Lorentz force distribution) is assumed negligible. This krnown velocity field may
satisfy certain dynamic constraints (e.g. those imposed by the Euler equations or the
Navier—Stokes equations, with or without Coriolis forces, buoyancy forces, etc.) but
it is convenient to adopt a general approach in which u is freed from any such dynamic
constraints, and we simply investigate the general behaviour of solutions of (1.1) for
a wide class of velocity fields #, which are supposed to satisfy only the mild kinematic
constraint of incompressibility

V'u=0. (1.2)

In the particular important situation in which u is steady, i.e. u = u(x), (1.1) admits

solutions of the form
B(x,t) = Re {B(x) e?'}, (1.3)

where pB =V A(unB)+4V2B. (1.4)
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Here p is the (possibly complex) growth rate associated with the field structure B(x)
(which satisfies V* B = 0). In conjunction with appropriate boundary conditions on
B(x), (1.4) constitutes an eigenvalue problem; and if any of the eigenvalues
Py, Ps, P3, --- have positive real part, then the corresponding field structures
B/(x), B,(x), B,(x), ..., grow exponentially in time. The associated dynamo is oscilla-
tory or non-oscillatory in type according as the imaginary part of p is non-zero or
zero respectively.

The distinction between ‘fast’ and ‘slow’ dynamos has been introduced by
Vainshtein & Zel’dovich (1972), and the distinction provides the basis for much of
the discussion in the recently published monograph of Zel’dovich, Ruzmaikin &
Sokoloff (1983). Suppose that the velocity field u(x) is characterized by a lengthscale
I, and a velocity scale u,, so that the timescale characteristic of the motion (the
‘turnover time’) is

ty = Lo/ Uq- (1.5)
The magnetic Reynolds number associated with the flow is
Ry = uoly/, (1.6)

and we are particularly concerned in astrophysical contexts with the limiting
behaviour when B, — c0. A dynamo with growth rate p = p,.+ip;t is said to be slow
if pete—>0 asR— o0, (1.7)
and it is said to be fast if

Peto—~>const >0 as R -—>o0 (1.8)

(Zel’dovich & Ruzmaikin 1980). For a slow dynamo, the mechanism of field
generation is diffusive in character (or at least involves magnetic diffusion in an
essential way). All dynamos with laminar velocity fields u(x) for which detailed and
rigorous calculations have been carried out are of the slow type; typically, for a slow
dynamo, pety = O(R;9) as R, >0, where0<g< 1. (1.9)

The fast dynamo, if it exists, becomes (in some sense) insensitive to the value of
7 as 7—0. The first thing to do is therefore to examine the properties of (1.4) when
we simply put # =0, i.e.

pB=VA@uAB). (1.10)
There are certainly solutions of the equation for which p = 0, viz those for which
B = u(x)u(x), (1.11)
where u{x) is any scalar function of position satisfying
uVyu = 0. (1.12)

This is not, however, a fast dynamo, since p = 0. For certain obvious choices of u,
there are also solutions of (1.10) for which p is pure imaginary. For example, if u is
a rigid-body rotation with angular velocity £, and B(x) is a sinusoidal function
~ e1imé of the azimuth angle ¢ about the axis of rotation, then p = +im€; but again
P, = 0, and this is not a fast dynamo.

In §2, we shall in fact show that there are no localized solutions of (1.10) for which
p, £ 0. This means that any fast dynamo must involve diffusive effects in a crucial

1 Suffixes r and i will throughout refer to real and imaginary parts.
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FiGure 1. The stretch-twist—fold cycle; is this a fast dynamo?

way, and it can do this only if the field B varies on a scale O(y}) so that » V2B = O(1)
as 7—>0. We shall show in §3 that, if the relative helicity of a fast-dynamo magnetic
field is O(1), then this scale-refinement effect must occur throughout a fraction of the
available volume that remains O(1) as #—>0 (and not, for example, only in the
neighbourhood of a set of singular surfaces).

These results do not prove the existence of a fast dynamo — they merely describe
what it must look like if it does exist. It is desirable to have a much more detailed
picture, and for this purpose there are two candidates for fast-dynamo action which
deserve detailed study.

(a) The stretch, twist and fold dynamo. This is the prototype fast dynamo proposed
by Vainshtein & Zel’dovich (1972). An initially circular flux tube of small cross-section
is subjected to a stretch, twist and fold sequence as indicated in figure 1, like the
doubling of an elastic band. To get back exactly to the initial configuration, with a
doubling of the field strength, a little diffusion is evidently needed to eliminate the
crossing of field lines in the neighbourhood of the point P; but if it is accepted that
this can be achieved, then the doubling time should be of order [,/u, =t{,, the
timescale for the stretch—twist—fold cycle, independent of #. We shall study this
process closely in §4, and show that the effect of diffusion is crucial in determining
the field structure that may develop under many iterations of the cycle. We shall also
construct an Eulerian velocity field which incorporates the stretch, twist and fold
ingredients, and which is proposed as a candidate for a localized fast dynamo.

(b) The space-periodic Beltrami dynamo. A second veliocity field that has attracted
recent, attention in the fast-dynamo context (Arnold & Korkina 1983; Galloway &
Frisch 1984) is the space-periodic field

u= (Uysinkz+ U, cosky, U, sinkx+ Uy coskz, U, sinky+ U, coskz), (1.13)
which satisfies the Beltrami condition
0=V Au=ku, (1.14)

and which is therefore a field of maximal mean helicity {u*w) = k{(u?) (angular
brackets indicating an average over a cube of side 2n/k). The field (1.13) is of intrinsic
interest because of the chaotic character of the streamlines when U, U, U, #% 0 (Arnold
1965; Hénon 1966), a property that may be conducive to fast-dynamo action.
Mean-field and first-order-smoothing techniques (Roberts 1970; Childress 1970; see
also Moffatt 1978, chap. 7) may be used to show that the velocity field (1.13) will
act as a dynamo when R, is small, the field B then growing on a scale L large compared
with I, ~ k71. As B, increases, the scale L decreases, and ultimately the techniques
of mean-field electrodynamics are inapplicable. The approach of Arnold & Korkina
(1983) and of Galloway & Frisch (1984) is to restrict attention to fields B(x,t) that
are space-periodic with the same period 2n/k as u (and with zero mean over the basic
cube), and to compute the field evolution. Results obtained for R, up to 200
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(Galloway & Frisch 1984) are suggestive of fast-dynamo action, although a more
detailed analysis of field structure than is yet available will be required to confirm
this behaviour. We return to this problem in §5, where some general aspects of
space-periodic dynamos are discussed.

2. Topological constraints on a non-diffusive fast dynamo

Consider first the perfectly conducting situation in which # = 0 and B(x, ¢) satisfies
the frozen field equation

3B
= =VAW@AB). (2.1)

Suppose that B is localized in the sense that
e*"|B|—->0 asr=|x|>o0 (2.2)

for some k > 0, and let A(x,t) be a vector potential for B. Then it is well known
(Woltjer 1958) that
H = IA'B dV = const. 2.3)

This invariant, the helicity of the field B, is essentially topological in character
(Moffatt 1969), and is in fact a generalization of the Hopf invariant, described as the
asymptotic Hopf invariant by Arnold (1974).

A magnetic field with non-zero helicity is one for which there is a net linkage of
lines of force. The fact that lines of force are frozen in the fluid implies that this net
linkage cannot change, and this is reflected mathematically in the conservation of
M . Tt is therefore obvious that a field that has non-zero helicity cannot be amplified
by dynamo action, since this would imply a corresponding exponential increase
in J.

This argument does not exclude the possibility that a field for which # = 0 (i.e.
for which the net linkage is zero) may be amplified by dynamo action, with at most
time-periodic change of structure, when % = 0. This possibility may however be
eliminated by the following argument.

We are concerned with the existence of solutions of (1.10) with p # O for given u(x).
We may include the possibility of compressible flow by introducing a density field
p(x), and a (steady) mass conservation equation

V:(pu) = 0. (2.4)

We shall consider two cases:

case A. u(x) is localized in the sense that there exists a finite closed surface S on
which u*n = 0;

case B. u and B are space-periodic with the same basic cuboid of periodicity, whose
surface we again denote by 8.
In either case, let the volume interior to S be denoted by V.

Now if A4 is a vector potential for B, we may ‘uncurl’ (1.10) to obtain

pA=unrB-Vp (2.5)

A

for some scalar field ¢. If p+ 0, we may introduce the change of gauge
A = A+;z)‘1 V¢, so that

-~ -~

pA,=unB, VAA, =B, (2.6)
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from which it immediately follows that
A (VAA)=0. (2.7)

If fil(x) were a real vector field, then this would be recognized as the condition for
the existence of a family of surfaces g(x) = const., everywhere orthogonal to 4,, i.e.
for the existence of scalar functions f(x), g(x) such that

A, =fvg, B=VfAVy. (2.8)

In fact, the result (2.8) still holdst when /il is complex, but now f(x) and g(x) are
complex scalar fields. Substituting (2.8) back in (2.6) gives

pf Vg =un(VfAVyg) =VfuVg—Vgu-Vf, (2.9)
and crossing this with Vf gives

(of+uVf)B=0. (2.10)
Hence at every point of space, either B=0Oor
pf+u-Vf=0. (2.11)

Suppose first that B is non-zero throughout ¥V, so that (2.11) holds thoughout V.
We easily deduce that

(p+p*) fv plfIFdV = —L p(um) | ]2 dS. 2.12)

In case A the surface integral vanishes because u*n = 0 on §; in case B it vanishes
by periodicity. So in either case it follows that p, = 3(p+ p*) = 0, and so we do not
have a fast dynamo. .
_ Now suppose that there exists a surface S, inside 8 on which B = 0, but such that
B % 0 in the volume V, interior to §,. Then B(x,t) =0 (all ¢) on S, and B(x,¢) + 0
in V. By Alfvén’s theorem, it follows that u*n =0 on §, (since otherwise these
conditions could not persist). We may then apply the above argument to the volume
V;, and again we conclude that p, = 0.

We may conclude therefore that, in all cases considered, a non-diffusive fast
dynamo is impossible.

Note that, if p = ip; + 0, then from (2.9), at all points where B+ 0, we must have
pf*"'vf=°’} ViAVg +0. (2.13)
uVg=20

This can happen only if the streamlines of the flow are the intersections of the surfaces
g, = const, g, = const, i.e. only for a very special {non-generic) class of velocity fields.

3. Topological constraints on a diffusive fast dynamo

In the presence of weak molecular diffusivity, helicity is no longer conserved. In
fact, from (1.1) and the ‘uncurled’ equation

aa_‘;‘=uAB—V¢—nVA(VAA) (3.1)

t This is a consequence of Frobenius’ theorem in C? (see e.g. Boothby 1975, p. 159). The result
may be proved by elementary methods (following Ince 1925, p. 52) by regarding 4, as an analytic
function of 3 complex variables (x, y, z) and ultimately restricting to the real axes.
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we may readily obtain the equation

d
&J‘A'BdV= —2ﬂJB'VA(VAA)dV, (3.2)
where the integrals are throughout all space. Hence, even if # is very small, the
helicity can change significantly when the field gradient becomes large.

We may obtain an upper bound on the growth rate p, of a dynamo as follows. First
we average (3.2) over a time 2n/p;; denoting this average by an overbar, (3.2) then
gives

prJA'BdV= —ﬂfB'V/\(V/\A)dV. (3.3)
By the Schwarz inequality,
1 1
JB'VA(VAA)dVS(JFdV) (I(V/\(VAA))de). (3.4)
Defining the lengthscale I characteristic of the field B by
I(VA(VAA))de=l§4 fﬁdV (3.5)
and the relative helicity #'y (satisfying | #g| < 1 by
IA'BdV
”R = — é, (3-6)
(fA2 d Vfﬁ d V)
we easily obtain from (3.3)—(3.6)
|pe| < 7/l # gl (3.7)
or equivalently |# gty < /Dl (3.8)

Now in general a velocity field that has non-zero helicity will tend to generate a
magnetic field with non-zero helicity, so that in general there is no reason to expect
that #°g should be small. If |5 | = O(1) then (3.8) implies that I3/l is at most
O(RI‘,“é ); from the definition (3.5) it then seems likely that the scale of B must be O(R;é)
or less over an O(1) fraction of the low domain.

The diffusive fast dynamo (if it exists!) therefore generates a magnetic field whose
gradient is typically O(R},), and which evidently becomes non-differentiable over a
substantial part of the flow domain in the limit R, — oo (y~0). The Lorentz force
distribution in such a dynamo is

F(x,t) =jAB=p,"(VAB)AB ~ B*/u,l,, (3.9)

and this also will vary on the scale {5. This force will ultimately generate an additional
velocity field u,(x,?) on this same lengthscale, a process which must ultimately be
responsible for equilibration of the growing field.

Such a dynamo is totally different from the slow dynamos that emerge from, for
example, the two-scale analysis of mean-field electrodynamics. In these dynamos, the
growing mean magnetic field has a scale L large compared with /,, and there is also
a fluctuating ingredient on the scale [, driven directly by the velocity field u. The
Lorentz force acts either to suppress the turbulence (Moffatt 1972) or to drive a
large-scale mean velocity (Malkus & Proctor 1975). In the fast dynamo considered
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FicUure 2. The stretch u,(x) leads to flattening of the flux-tube cross-section to elliptic form. This
is followed by the twist u,(x) and the plane strain u,;(x) to bring the points 4 and B towards each
other.

here, the scale of the magnetic field is small compared with the scale of the velocity
field u(x), and the Lorentz force acts to generate small-scale velocity fluctuations
u,(x,t). This is indeed a novel situation in the dynamo context.

In §4 we examine in detail the stretch, twist and fold dynamo described in §1, with
a view to understanding just how it is that large field gradients can develop.

4. Stretch, twist and fold dynamo

Let us consider again the distortion process depicted in figure 1, but now taking
account of the finite cross-section of the flux tube. Suppose that the centreline of the
flux tube is initially the circle 224+ y? = a? in the plane z = 0, and that its cross-section
is initially a circle of radius ¢ € a,. We shall suppose first that = 0, i.e. that diffusion
is totally negligible.

The initial process of stretching (figure 2) may be achieved by the uniform
incompressible straining field

u,(x) = (ax, ay, —2az), (4.1)

with a > 0. Under the action of this field, the radius of the flux tube increases
exponentially : a(t) = a, e*, 4.2)
being doubled after a time ¢, = a~!In2. At the same time the cross-section of the
tube is flattened by the strain into an ellipse

Hx—2a,)2+162% = 2, (4.3)

with semiaxes in the ratio 8:1. Note that the volume of the flux tube V = 2n%c%a,
remains constant.
Consider now the twist stage. A twist about the z-axis is well-represented by the

velocity field u,(x) = (0, —(x) 2, 0(2) Y), (4.4)

where w(z) is antisymmetric about z = 0, the simplest possibility (uniform twist)
being w(x) = —fx, where f is constant (f > 0 for a right-handed twist), so that

uy(x) = (0, frz, —fzy). (4.5)
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l Reconnect

Ficure 3. Twisting and reconnection of paper tape, or flux tube of elliptic cross-section.

This is a twist of the kind that is applied to an elastic band in the doubling process,
but it fails to mimic this process in that the points (0, +2a,,0) (4 and B in figure 2)
remain fixed under the velocity field (4.5) and do not approach each other as
suggested in figure 1. This approach in an ‘experiment’ with elastic band or paper
tape is a natural consequence of the resistance of these materials to stretching, a
feature that does not arise for the magnetic flux tube if the Lorentz force is negligible.
(It is interesting to note here that a strong magnetic field subjected to twist would
presumably respond in a nearly inextensible manner, so that, in a dynamic regime
in which Lorentz forces are important, the elastic-band analogy may be more
relevant.)

In order to achieve the approach of the points 4 and B, we have to supplement
the twist field (4.5) by a further strain field which compresses along the y-axis, but
leaves the scale of the loop along the z-axis undisturbed. The two-dimensional strain

field uy(x) = (0, — By, f2) (4.6)

with # > 0 will do for this purpose. If the fields #, and u, act simultaneously for a
time ¢, = n/4a,f, then the distance between 4 and B will be reduced to

0 = 2a, eFtr = 2q, e~ "F/100] (4.7)

Now, however, we are twisting not simply a closed curve, but a flux tube with initially
elliptic cross-section. The twisting of a paper tape provides a better analogy. As a
simple experiment will demonstrate, a right-handed twist applied to a paper tape
induces a left-handed twist of the tape about its own centreline (figure 3).1 If the tape
is broken and reconnected at the points 4 and B (simulating the diffusion process),
then the two loops thus created have the form of Mébius strips, each one having a
net left-handed twist of m.

Similarly the flux tube will develop what may be described as ‘intrinsic twist’ as
a result of the action of the velocity field u,(x) + u,(x). When reconnection takes place,
this intrinsic twist manifests itself as helicity of the magnetic field. A ‘poloidal’
magnetic field has been generated, superposed on the original toroidal field round each

t Certain features of this process have been recently considered by Berger & Field (1984).
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F1cURE 4. Helical field B in a twisted tube of force; the poloidal part of the field By is
associated with a toroidal current j; which has zero integral over the tube cross-section.
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Fieure 5. Folding of two loops into near-coincidence, followed by translation U
and rotation @ to return to configuration of figure 2.

loop. Thus the process is not unlike the process by which poloidal loops of field are
generated by cyclonic eddies (Parker 1955), the process which underlies the a-effect
of Steenbeck, Krause & Rédler (1966). In the present context, the poloidal field is
associated with a toroidal current flowing round each flux tube; the net flux of current
along the tube is however zero, since the poloidal field is confined to the neighbourhood
of the flux tube (figure 4).

To complete the stretch—twist—fold cycle, we require a velocity field u,(x) that
represents the action of folding the two loops of figure 5 into near-coincidence. A field

that will achieve this is U (%) = (—y, yy+ga2, 0), (4.8)

with y > 0, g > 0. The g2? ingredient deforms the loops out of the (x, z)-plane, and
the remaining (plane-strain) part of (4.8) compresses both loops towards each other
on the (y, z)-plane. A small value of g (ga, <€ ) will suffice to achieve the necessary
effect, in a time ¢, satisfying yt, 2 1

We now have a double loop in the (y, z)-plane. To complete the process and to return
to the initial configuration, we require a translation (of order a,) and a rotation in
about the y-axis; the velocity field

u(x) = (0,0,0) A x—(0, U, 0) (4.9)

with U &~ 2a,w/n will achieve this effect in a time {; = 2w/%.

The velocity fields u,(x), u,(x), ..., uy(x) should thus, in succession, and applied for
suitable time intervals, achieve an approximate doubling of the initial magnetic field,
but at the cost of generating a net twist in both of the new flux tubes. If these velocity
fields act simultaneously, so that we have the steady velocity field

u(x) = u(x)+uy(x)+ ... +uy(x)
= (d'v+wz, By+get+frz—U, v'z—wzr—fry), (4.10)
where ' =a—y, f=at+y—4F 7y =-—2a+p, (4.11)
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then we may expect that the initial loop will be continuously deformed in a similar
way, and indeed that the doubling process should be repeated again and again if the
velocity field (4.10) is sustained. The particle trajectories associated with (4.10) are
given by the dynamical system

—f—a’x+w w

KT “

dy _

a=ﬂy+gx2+fxz—U, (4.12)
dz ,

=" z2—wx—fry,

where o’ + 8+’ = 0, and where approaching of the two loops in the twist and fold
process is achieved if &’ < 0 and g’ < 0. This volume-preserving (V-u = 0) system
clearly deserves close study, for various values of &', #', w, g, f, U; it seems highly
likely that, in general, the trajectories are chaotic.

The vorticity associated with the velocity field (4.10) is

o(x) = (—2fx, 20+ fy, 2gx + fz), (4.13)
and the helicity, integrated over any sphere | x| < R, is

H(R) = J uowdV=—inkfa (4.14)
x| < R

The motion therefore has a net right-handed or left-handed sense according as fa’ < 0

or > 0. It is the helicity (4.14) which, in conjunction with weak diffusion, is

responsible for generating helicity (of opposite sign!) in the magnetic field.

The motion (4.10) is of course unbounded at infinity, and there is no guarantee that
the trajectories of fluid particles will remain within a sphere r < R, no matter how
large R may be. It is easy, however, to modify the velocity field (4.10) so that nearly
all of the trajectories do all return to the neighbourhood of the origin. To do this,
let A(x) be the vector potential of u(x), a cubic function of the coordinates: in fact

A(x) = [gaPz— Uz+3 fe(22+y?%), yzr —jw(x® +2%), — fBry]. (4.15)
Now define the modified vector potential
AM(x) = A(x) e /R (4.16)

and the modified (solenoidal) velocity field
uM(x) = VA AM(x). (4.17)

Then clearly u™ coincides with u for r € R, and yet is exponentially small for r 2 R,
so that nearly all of the streamlines are forced to return to the interior of the sphere
r = R. Any magnetic field that is initially confined to the sphere r < R will then
probably remain so confined for all time (under the frozen field assumption).

Let us now consider what happens when the stretch—twist—fold cycle is repeated.
The stretch is now applied to two adjacent flux tubeseach of 8: 1 elliptical cross-section
twisted in the form of a Mobius strip. The initial stretch in the (x,y)-plane again
flattens the cross-section: where the long axis of the ellipse is initially parallel to the
plane, the ellipse is further stretched till its axes are in the ratio 64:1, and where the
long axis is initially perpendicular to the plane, the cross-section returns to the
original circular form (but with } the original radius). The twist about the x-axis
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Fiaurk 6. Section of flux tube when diffusion limits compression.

again induces additional intrinsic twist in the flux tube — the twisting and reconnection
of a Mébius strip leads to a M6bius strip (twist ) and a strip with twist 2%; in the
case of flux tubes, if symmetry is maintained between the two daughter tubes, then
each will have a twist of r. The folding stage again leads to the superposition of these
two tubes, which will moreover be linked with the neighbouring ‘cousin’ tubes.

It is clear that, even after only two stretch, twist and fold cycles, we have generated
a field of considerable complexity. To be sure, the toroidal flux has increased fourfold;
but poloidal field varying on a scale &c has been generated — and after n cycles the
scale of variation would be ¢/2%". ThlS is in effect an exponential decrease of scale
lg ~ ce ', where ¢, is the timescale of the stretch—twist—fold cycle. Clearly,
molecular diffusion, neglected in the discussion so far, must intervene to eliminate
these field variations as well as to achieve the reconnection of flux tubes. It seems
clear that we are dealing with a fast dynamo of the diffusive rather than the
non-diffusive type (see §3). Let us now consider the effects of diffusion in more detail.

For the sake of argument, suppose that the initial stretch (4.1) is maintained for
a long time until the smaller dimension of the cross-section of the tube is reduced
to O(y/a)t, at which diffusion becomes important. This lengthscale does not then
reduce further (figure 6). However, the larger dimension of the cross-section continues
to increase like e*, and, since the total toroidal flux in the tube is constant during
the stretch process, the field intensity must decrease like e™*. In fact, if we move with
the flux tube, the relevant local solution of (1.1) with the velocity field (4.1) is

B = (0, B(2,1),0), with B(z,t) = B, e il (4.18)

This type of behaviour in which the decrease of scale in one direction is limited by
molecular diffusion was discussed in the context of scalar-field diffusion by Batchelor
(1959); its importance in the dynamo context has recently been emphasized by
Zel’dovich ef al. (1984).

When we are on this small lengthscale, it is evident that, in the stretch—twist—fold
cycle, the toroidal field is not doubled — it is halved! The toroidal flux is nevertheless
doubled, because there are now two adjacent flux tubes each with double the original
cross-section. Repetition of the cycle leads to continued increase of the net cross-
section, and the structure of the field that finally emerges from many repetitions will
undoubtedly be very different from the initial simple circular flux tube of small
cross-section.
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5. The space-periodic Beltrami dynamo

A Beltrami flow is one for which V Au = k, u, where k, is constant. Such a flow
has maximal helicity, and for this reason is of particular interest in the dynamo
context. The helical wave

u,(x,t) = (0, U, sin(kyx—w,t), U, cos (kyx—w, ) (5.1)
satisfies the Beltrami condition, and has helicity
H,=<u"VAau)=rU: (5.2)
Similarly, defining
Uy(x,t) = (U, cos (kyy—w,t),0, U, sin (kyy —w, t), (56.3)
uy(x,t) = (U, sin (kyz—w4t), U, cos (kyz—wyt),0), (5.4)
the velocity field u(x, t) = uy (X, 1)+ uy(X, £) + (X, £) (5.5)
satisfies VA u = kyu and has helicity
H ={uVAu =k (U+UZ+U2). (5.6)

The flow (5.5) is an exact solution of the Euler equation in a rotating fluid ; in a frame
rotating with angular velocity € this equation may be written

aa—'t‘+2{)Au= —V(%+§u2>+u/\w, (6.7
and it is easily verified that this is satisfied by (5.5) provided
2 = —3(0,,0;,0y), (5.8)

and provided p is suitably chosen. When w, = @, = w, = 0, we have the steady flow
(1.14) discussed briefly in §1.

It is well known that flows of this type are capable of dynamo action on
lengthscales L large compared with ky! (Childress 1970 ; Roberts 1970). Indeed, there
is an a-effect associated with the motion (5.5), which, on first-order-smoothing theory,

is given by the tensor
a0 0

0 0 a'®

qUL kg

where a® = ———1 -0
3
02 +12kg

(n=1,2,3) (6.10)
(Moffatt 1978, §7.7). When the frequencies w, are non-zero, a'® >0 as 70, a
property that persists at all higher orders of perturbation theory (Dillon 1974).

If, for simplicity, we consider the isotropic situation

(5.11)

W, =W, =W, =,

_ nky H
then Ay = aai]-, where a = —m (512)
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Similarly, there is an augmentation of the molecular diffusivity given by

g= 29k, E

T 3(w2+ 2kl
where E = 3U? is the mean kinetic-energy density of the motion (3 = 2k, E). The
important point here is that

(5.13)

|| (I%’ I>
Ll R = 5.14
and, although this is a result of first-order-smoothing theory, it may be expected to
hold at higher orders of perturbation theory also.

The mean-field equation, describing evolution of a field B, on a scale large
compared with k;?, is B
a—t“ ~ aV A B,+ (n+ ) V2B, (5.15)
This has non-oscillatory dynamo solutions of force-free structure (VA B, = KB,)
whose growth rate p is given by

p=aK—(n+p) K. (5.16)
The maximum growth rate occurs for
||
K=K =—-—, 5.17
TRy &40
and, if we adopt the expressions (5.12) and (5.13), then
2
K Uk (5.18)

Ky 2[UPKEH (@ +7Hd)]
so that K, <€k, (as required for self-consistency of the approximation (5.15))
provided W+ 7Pt > DR, (5.19)

As U increases (for fixed w and 7), the preferred scale of growth of the field B, decreases
towards the scale k;? of the velocity field, and the methods of mean-field theory
become progressively less reliable.

The alternative approach (Arnold & Korkina 1983 ; Galloway & Frisch 1984) is then
to restrict attention to a field B(x, ) with the same periodicity as the field # and with
zero mean over a basic cube of side 2n/k,. The results (2.5) and (2.6) apply equally
if V is taken to be this cube — so, if = 0, the magnetic helicity in the cube is constant.
The arguments of §§2 and 3 then imply that, if we have a fast dynamo (p, = O(1))
with non-zero magnetic helicity, then the scale of variation of the magnetic field must
be of the order R} k;? nearly everywhere. In spectral terms, the spectrum of B may
peak at wavenumbers of order k,, but the spectrum of VA B must have strong
contributions at wavenumbers of order R}, k,. The situation is consistent with the
statement of Galloway & Frisch (1984)1 that ‘““spectra of the growing or decaying
modes show that the value of the wavenumber k£ at which the energy peaks is
surprisingly insensitive to R, though the length of the tail appears to increase roughly
as the square root of R”. In the range of wavenumbers k, < k < R k,, the magnetic
spectrum function M(k) presumably has a power-law dependence of the form

M)~ k9, 0<g<3. (5.20)

t Galloway & Frisch restrict attention to the steady case (0, = w, = w, = 0) and present results
for R(= R,,) < 200.
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If the process of field distortion is qualitatively similar to that of the stretch—
twist—fold dynamo of §4 then it would appear that the fluctuation of V A B that is
generated at any scale k™! is related to the twist effective at that scale, and for the
motion (5.5) considered, this twist is independent of k. This suggests that (k2M(k)) k
should be independent of k, i.e. that ¢ = 3 in (5.20). The integral of k2M(k) is then
logarithmically divergent as 5 -0, corresponding to the non-analytical character of
the magnetic field in this limit. The results available at present (Galloway, private
communication) suggest that M(k) in fact falls off more slowly than ¥72 in the range
ky < k < R k,; the reasons for this are not as yet clear.

6. Conclusions

The fast dynamo is a dynamo whose growth rate p, is independent of 5 in the limit
7—>0. Its existence, as a phenomenon distinct from the more familiar slow dynamo,
has not yet been rigorously established for a steady flow. This paper has been devoted
to a discussion of its structural properties, if it does exist. We have shown firstly that
a ‘non-diffusive’ fast dynamo does not exist, and secondly that, for a ‘diffusive’ fast
dynamo, the scale of variation of the magnetic field of a growing helical mode must
typically be O(R;#) and diffusion must play the key role in resolving the conflict
between magnetic-helicity invariance and exponential field growth. The stretch—
twist—fold dynamo has been examined in some detail, and the mechanism by which
fine structure appears in the magnetic field has been revealed. A similar fine structure
must appear in the space-periodic dynamo of Arnold & Korkina (1983) if, as suggested
by the computations of Galloway & Frisch (1984), this is indeed a fast dynamo in
the limit B, — c0.

REFERENCES

ARrNoLD, V. 1. 1965 Sur la topologie des écoulements stationnaires des fluides parfaits. C. R. Acad.
Sci. Paris 261, 17-20.

ArNoLD, V. 1. 1974 The asymptotic Hopf invariant and its applications (in Russian). In Proc.
Summer School in Differential Equations, Erevan 1974. Armenian SSR Acad. Sci.

ArxoLD, V. I. & Korkina, E. I. 1983 The growth of a magnetic field in a three-dimensional steady
incompressible flow (in Russian). Vest. Mosk. Un. Ta. Ser. 1, Mat. Mec. 3, 43-46.

BATOHELOR, G. K. 1959 Small-scale variations of convected quantities like temperature in
turbulent fluid. Part 1. General discussion and the case of small conduetivity. J. Fluid Mech.
5, 113-133.

BERGER, M. A. & FirLD, G. B. 1984 The topological properties of magnetic helicity. J. Fluid Mech.
147, 133-148.

BootuBy, W. M. 1975 An Introduction to Differentiable Manifolds and Riemannian Geomelry.
Academic.

CHILDRESS, 8. 1970 New solutions of the kinematic dynamo problem. J. Math. Phys. 11, 3063-3076.

Drron, R.F. 1974 Gravity and magnetic field correlation and related geomagnetic topics,
chap. 6. Ph.D. thesis. Cambridge University.

Garroway, D. & FriscH, U. 1984 A numerical investigation of magnetic field generation in a flow
with chaotic streamlines. Geophys. Astrophys. Fluid Dyn. 29, 13-18.

Hinon, M. 1966 Sur la topologie des lignes de courant dans un cas particulier. C. R. Acad. Sci.
Paris 262, 312-314.

Ince, E. L. 1925 Ordinary Differential Equations. Dover.

Markus, W. V. R. & Proctor, M. R. E. 1975 The macrodynamics of a-effect dynamos in rotating
fluids. J. Fluid Mech. 67, 417—444.



Topological constraints on fast dynamo action 507
MorrarT, H. K. 1972 An approach to a dynamic theory of dynamo action in a rotating conducting
fluid. J. Fluid Mech. 53, 385-399.

MorraTt, H. K. 1969 The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35,
117-129.

Morrart, H. K. 1978 Generation of Magnetic Fields in Electrically Conducting Fluids. Cambridge
University Press.

PARKER, E. N. 1955 The formation of sunspots from the solar toroidal field. Astrophys. J. 121,
491-507.

RoBERTS, G. 0. 1970 Spatially periodic dynamos. Phil. Trans. R. Soc. Lond. A 266, 535-558.

STEENBECK, M., KRAUSE, F. & RADLER, K.-H. 1966 A calculation of the mean electromotive force
in an electrically conducting fluid in turbulent motion under the influence of Coriolis forces
(in German). Z. Naturforsch. 21a, 369-376.

VaINsHTEIN, S. 1. & ZEL'DOVICH, YA. B. 1972 Origin of magnetic fields in astrophysics. Sov. Phys.
Usp. 15, 159-172.

WoLTJER, L. 1958 A theorem on force-free magnetic fields. Proc. Natl Acad. Sci. 44, 489491,

Zer'povicH, Ya. B., MoLcHANOV, S. A,, RuzMAIKIN, A. A. & SokoLorF, D. D. 1984 Kinematic
dynamo problem in a linear velocity field. J. Fluid Mech. 144, 1-11.

ZEL'DOVICH, YA. B. & RuzmaIkIN, A. A. 1980 The magnetic field in a conducting fluid in
two-dimensional motion. Sov. Phys. JETP 51, 493-497.

ZEL'povicH, Ya. B., RUZMAIKIN, A. A. & Soxororr, D. D. 1983 Magnetic Fields in Astrophysics.
Gordon & Breach.

17 FLM 154





