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We consider the linear stability to three-dimensional perturbations of two-dimensional
nonlinear magnetohydrodynamic basic states obtained from a specified forcing function
in the presence of an imposed initially uniform magnetic field of strength By. The forcing
is chosen such that it drives the ‘circularly polarized’ (CP) flow of Galloway & Proctor
(Galloway & Proctor 1992 Nature 356, 691-693) when By=0. We first examine the
properties of these basic states and their dependence on By and the magnetic Reynolds
number Rm. The linear stability of these states is then investigated. It is found that, at a
given Rm, the presence of a background field is stabilizing. The results also allow us to
speculate that, at a fixed value of By, the growth of the unstable perturbations is ‘fast’, in
the sense that the growth rate becomes independent of Rm as Rm— .

Keywords: dynamo theory; fast dynamo action; magnetohydrodynamic instability

1. Introduction

The problem of the sustained generation of magnetic fields by fluid motion
(dynamo action) is of immense importance in understanding the internal
dynamics of the Sun, Earth and planets. Most research to date has focused on the
derivation of conditions under which small initial fields, with no net fluzr, can
grow as a result of dynamo action (the kinematic dynamo problem), and on the
size they reach before dynamical effects supervene and halt the growth of
magnetic energy (the dynamical or magnetohydrodynamical dynamo problem).
For these classical dynamo problems, there is a clear distinction between, on the
one hand, the non-magnetic case and, on the other, two equivalent dynamo
states, related by having opposite signs of the magnetic field B, but with the
same velocity u.

It is easy, however, to conceive of situations in nature in which the ambient
flux is unlikely to be zero, and in which small-scale fluid motions exist in a
background of a large-scale field that, measured over the appropriate scales, has
a net flux. On the Sun, for example, the supergranular and granular convective
motions are threaded by a magnetic field of a much larger scale emerging from
deeper in the solar interior (and, most probably, the result of another dynamo
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mechanism—possibly here one of zero net flux). In a different astrophysical
context, the significant magnetic fields of the Jovian moons Io and Ganymede
may result from their magnetohydrodynamic (MHD) processes taking place
within the magnetic field of Jupiter (see Sarson et al. 1997).

It is therefore important to enquire into the analogue of the dynamo state
when the imposed field is not zero. When the magnetic Reynolds number Rm
(defined by Rm=UL/n, where U and L are typical velocity and length scales
and 7 is the magnetic diffusivity) is large, the fluctuating fields induced have
strengths much larger than the imposed field strength By, and, indeed, for
sufficiently small By, the solutions are almost independent of By, apart from the
imposed flux, which is small (relative to the r.m.s. field). Nonetheless, one
might expect, on grounds of continuity, that there is more than one possible
state of the system; one deriving continuously from the zero-field case and two
others (at least) from the two equilibrated dynamo solutions when By=0. This,
in turn, leads to the general question: as Rm is increased, with By#0, what is
the nature of the transition that is analogous to the dynamo instability? Owing
to the pre-existence of a Lorentz force field, this question cannot be answered
simply by looking at the dynamo properties of a velocity field modified by the
Lorentz forces. Instead, the stability calculation involves, in an essential way,
the equation of motion as well as the induction equation. This dichotomy has
also recently been noted by Cattaneo & Tobias (2008) and Tilgner &
Brandenburg (2008).

One well-studied system in which the distinction naturally arises between the
amplification of a background field (of non-zero flux) and the dynamo generation
of a field of zero flux is that of MHD convection. It is well known that when Rm is
sufficiently small, the field structure depends vitally on the imposed field, and that
all the field would disappear if the imposed flux were removed. This is the classical
problem of magnetoconvection, which has been studied over many years in a
number of guises (see the reviews by Proctor & Weiss (1982), Hughes & Proctor
(1988) and Proctor (2005) and references therein). However, if Rm is sufficiently
large, then convectively driven flows can act as a dynamo. Early analytical work
by Childress & Soward (1972) and Soward (1974) on rapidly rotating convection
confirmed the possibility of dynamo action in that case. Cattaneo (1999), following
on from the pioneering study of Meneguzzi & Pouquet (1989), showed numerically
that vigorous convection (with Rm of the order of a few hundred) could result in
small-scale dynamo action (with no significant mean field component), even in the
absence of rotation. Cattaneo & Hughes (2006) carried out a detailed numerical
investigation of the rotating case. In all these simulations, a statistically steady
state is reached, in which the magnetic energy is smaller than, but of the same
general size as, the kinetic energy; the vigour of the convection is somewhat
reduced but its Eulerian properties do not seem much changed.

Dynamo simulations are, of course, conducted without an imposed magnetic
field. A detailed study of the effect of an imposed field on a convective state
sufficiently vigorous to act as a dynamo has been performed by Cattaneo et al.
(2003). This shows a transition from a convective dynamo to something
indistinguishable from magnetoconvection as the strength of the imposed field is
increased. Because the flows are disordered, and no obvious symmetries are
broken as the fields and flow change, it is hard to detect any symmetry-breaking
effect associated with the analogue of the onset of dynamo action when an
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imposed magnetic field is present. Nonetheless, one would expect some such
transition to be present as argued above. Even if the broad features of the fields
do not change much when the transition occurs, it is important to acquire some
understanding of the nature of the solution space, and how it depends on the
parameters of the problem. However, for the general case, it is not clear how to
proceed at present.

The idea of this paper is to sidestep these difficulties by investigating a simple
system in which the basic state has a symmetry that will be broken by the
instability. Thus, the original and bifurcated solutions can be clearly
distinguished. In our particular case, we consider the evolution of three-
dimensional linear perturbations to a two-dimensional MHD basic state. Our
principal goal is to observe the effects of a background field on a well-studied and
important instability. The new effect can be characterized as an extension of the
classical kinematic dynamo problem, for which the basic state consists of a
prescribed velocity field but no magnetic field. In order to build upon work
performed on the classical problem, it makes sense to consider a basic state that,
in the absence of an imposed field, reduces to a flow whose kinematic dynamo
properties are well studied. Furthermore, since astrophysical interest is in the
properties of dynamos at high Rm, we also wish to consider a case for which the
basic flow field (i.e. that with By=0) acts as a fast dynamo—namely, magnetic
field growth rates become independent of the magnetic diffusivity as Rm— oo.
This enables us to explore the analogue of ‘fastness’ when the imposed field is
non-zero. For these reasons, we consider basic MHD states driven by a forcing
such that, in the absence of an imposed field, the flow reduces to the so-called
‘circularly polarized’ (CP) flow of Galloway & Proctor (1992), whose dynamo
properties are well understood (see also Cattaneo et al. 1995b; Hughes et al. 1996).

In §2, we first discuss the mathematical formulation of the general extended
dynamo problem and then look, in particular, at the modified Galloway—Proctor
problem. In §3, we discuss in detail the MHD states, first in terms of bounds on
average measures of the field and flow, and then by considering numerical
solutions of the basic state. Section 4 contains the key results of the paper
describing the linear stability of a range of basic states, differing in Rm and the
strength of the background field. The results and their implications are
summarized in §5.

2. Mathematical formulation

As explained above, in order to study unequivocally the possibility of linear
dynamo action in the presence of a background magnetic field, it is necessary
that the basic state and the perturbations are qualitatively different, and hence
can be unambiguously distinguished. The mathematical formulation of the
general problem is as follows. As basic states, we consider the long-time,
stationary (but typically time-dependent) states resulting from a forcing F(x, t)
in the presence of an initially uniform magnetic field, where the forcing is
chosen so as to impose a certain symmetry on the basic state. For simplicity, we
suppose the fluid to be incompressible. The evolution of the basic state flow U
and basic state magnetic field B are then determined by the following
dimensionless equations:

Proc. R. Soc. A (2009)
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oU —1g2
W—i_ UVU=-VII+B-VB+ Re V°U+F, (2.1)
0B “1g2
0—t+ U-VB=B-VU + Rm V°B, (2.2)
V-U =0, (2.3)
V-B =0, (2.4)

where IT denotes the total pressure (gas+magnetic), and Re and Rm are the fluid
and magnetic Reynolds numbers. It should be noted that the Lorentz force term
in (2.1) has no pre-factor, implying that magnetic fields are measured in terms of
the equivalent Alfvén velocity and not in terms of the imposed field strength Bj;
this is the convention used in dynamo theory, though not in magnetoconvection.

Linear perturbations u, b and 7 to the (nonlinear) basic state described by U,
B and II are then governed by the following equations:

‘;—":Jr U-Vu+u VU =-Vr+ B-Vb+ b-VB+ Re 'V'u, (2.5)
db —1g2

5, T UVb+uVB=B-Vu+bVU+Rm Vb, (2.6)

V-u =0, (2.7)

V-b=0. (2.8)

Kinematic dynamo action in this context therefore corresponds to an average
exponential growth of both the perturbation magnetic energy and the
perturbation kinetic energy. Mathematically, the problem involves the solution
of the six equations (2.1), (2.2), (2.3), (2.5), (2.6) and (2.7), subject to the
solenoidal constraints (2.4) and (2.8); this is in contrast to the classical kinematic
dynamo problem, for which U is prescribed, B=wu=0, and only (2.6) needs to be
solved, subject to the constraint (2.8). Because the coupled system (2.5)—(2.7) is
so different from the induction equation alone, it is difficult to predict a priori the
stability properties of the system when B, is not small.

For our study, we adopt a two-dimensional spatially periodic forcing F(z, y, t)
and impose that the basic state is similarly z-independent and with the same
spatial periodicity as F' in the zy-plane. We may then seek three-dimensional
perturbations of the form

u(z, y, z,t) = u(z, y, t)exp(ikz) (2.9)

(and similarly for b), where k is a real wavenumber. It should be noted here that
the fields b and — b are mapped into each other through a shift in z, and we are
therefore unable to discuss the interesting secondary question, generally
applicable to problems of this type, as to whether the sign-change symmetry of
the instability is broken by the presence of a background field.

For our specific choice of F, we adopt the forcing that, in the absence of a
background field and subject to stability considerations, drives the CP flow of
Galloway & Proctor (1992). We represent the velocity in poloidal and toroidal
parts by writing

Proc. R. Soc. A (2009)
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U=VX(yz)+wz= Uy + wz, (2.10)

where, here and below, we use the subscript ‘H’ to refer to the ‘horizontal’
components (i.e. those perpendicular to 2). For the basic CP flow, we have

¥ = w = +/3/2(cos(z + cos t) + sin(y + sin ?)). (2.11)

The flow is maximally helical (Beltrami), i.e. U is parallel to V X U; as such, it
can be driven by the forcing F given by

F=Fy+Fz=(d,—Re 'V)U. (2.12)

(The pressure gradient does not appear because of the Beltrami property of U.)
In contrast to the steady three-dimensional ABC flow analysed by Podvigina &
Pouquet (1994), which becomes unstable for Re>13 (for A=B=C=1), the
forcing (2.12) restricted to two-dimensional flows certainly yields the flow
(2.10)—(2.11) for Re of O(10*)—and, indeed, maybe does so for much higher Re.
However, the time scale for the decay of transient behaviour scales with Re, and
thus transients are extremely long-lived at high Re.

The Galloway—Proctor flow (2.11) is a time-dependent extension of the
steady, maximally helical cellular flow first considered by Roberts (1970). It has
sizeable regions of Lagrangian chaos, as measured by its Lyapunov exponents
(e.g. Cattaneo et al. 1995a), and, from the numerical evidence, appears to act as
a fast dynamo (Galloway & Proctor 1992). For sufficiently high Rm (=100),
the dynamo growth rate is maximized for an O(1) value of the wavenumber
k (k=0.57) and takes a value close to 0.3.

3. The basic state

In this section, we consider the (time-dependent) basic states that emerge as the
long-time solutions to equations (2.1)—(2.4), with initial conditions of U=0 and
B= By= By2. These are described by three parameters: the strength of the
imposed field By; the fluid Reynolds number Re; and the magnetic Reynolds
number Rm.

From (2.12), it can be seen that in order to drive the same flow at different
values of Re, the force clearly has to be Re dependent. Comparisons between
runs with different values of Re are therefore somewhat problematic since they
are not simply related by a change in viscosity. Consequently, we choose to keep
Re fixed for all of our calculations and to vary Rm and By. In order to keep the
duration of any transient phase in the evolution of the flow reasonably short, we
opt for the value of Re=1.

(a) Bounds

These basic states are interesting in their own right; and one can, in fact,
derive rigorous limits on the averages of the fluctuating fields and flows. Define

1 T 27 (2w
N = . Nl
) 47T Jo Jo Jo dedyds, (3:-1)

where T'is the temporal period of the solution (and where, if the solution is not
periodic, we take T— o). We write B= By+ By + Bz, U= Uy + wz and first

Proc. R. Soc. A (2009)
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consider the z-components of (2.1) and (2.2). If we multiply these equations by w
and B, respectively, and perform the spatial and temporal averages, we obtain

By (wVB) + (wBy-VB) — %(|Vw|2) + (wF) =0, (3.2)

By (wVB) + (wBy-VB) +%< |VB|?) =0. (3.3)

Integrating by parts and using the spatial periodicity gives (wVB)=—(BVw),
(wBy-VB)=—(BBy-Vw). We may then use the Schwarz inequality twice in
(3.3) to derive the inequality

1
Rm
which, in principle, gives a lower bound on the viscous dissipation of the
z-component of the flow. Another result is found by subtracting (3.2) from (3.3)
to give
1
Re

(VBI%) < (19wl )2 [By(B) + (| Bu | )/ (BY ], (3.4)

1 1 1
() + o (B) S (| Vw|?) + (| VB|%) < (u}) 27 < (| V| 3127,

(3.5)

where F? = (F?), and where we have used the fact, here and elsewhere, that for
27 X 27 periodic functions g(w, y) of zero mean, (| Vg|?) > (g*).

If we consider the horizontal components, then we can derive results that are
directly analogous to (3.4) and (3.5), namely

1
o (VB |2 < (VU )2 Bl | Bl )2+ (1 B | )] (36)
and
1 2 1 2 1 2 1 2
— - < = .
(| Un|?) + == Bul ) < oI Uu| ) + = (| VBu )

< Uy | PFa< (VU |D)PFy, (37

where Fy= (| Fy|?)"2 (For the forcing (2.12), Fy=F = (3+3/(2 Re*))"/2))
We can also use (3.5) and (3.7) to show that

(B2)£(|VB|2>£iReRm F? (3.8)

and
(|BH\2>S(\VBH|2)£iReRm}“%. (3.9)
We can make further progress with the horizontal components of the induction

equation. Owing to the two-dimensionality, we can write By =V X (A2), where
A satisfies
d0A

o7t Un VA =2(Uy XBy) + Rm V2 A. (3.10)

Proc. R. Soc. A (2009)
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Figure 1. Plots of (a) kinetic energy, (b) magnetic energy and (c) magnetic length €5 versus time for the
basic states with Rm=100 and (i)—(iv) imposed fields By=0.001, 0.01, 0.1 and 1, respectively.

After multiplication of this equation by A and averaging, we obtain the result
R~ (| By |*) < By(| Uy | )42 < By(| Uy |))*(| By |))'?,  (3.11)

so that
Rm ™ (| By |)"? < By(| Uy | )" (3.12)

We shall investigate the sharpness of these results in §3b.

(b) Numerical results

In this section, we describe the results of numerical simulations of the basic
state; Re=1 in every case. We look in detail at two values of the magnetic
Reynolds number, Rm=100 and 1000, and at a range of values of the imposed
field strength Bj. The equations (2.1)—(2.4) are integrated in time from an
initially static state until a time-periodic or statistically steady state is reached.
In the absence of a background field, the kinetic energy takes the value 1.5
(independent of time); the energy of the imposed magnetic field, (B3)/2, should
thus be compared with this value. (It should be noted that, in some of the runs,
there is a very fast initial stage where the magnetic energy rises rapidly at the
start of the calculation.)

Proc. R. Soc. A (2009)
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@) (b) (©) ._ (d)

0]

(i)

(iii)

(iv)

Figure 2. Snapshots (all scaled individually) of the z-components of (a) vorticity, (b) velocity,
(¢) current and (d) magnetic field. Rm=100 and (i)—(iv) the imposed field strengths are By=0.001,
0.01, 0.1 and 1, respectively.

(i) Rm=100

In figure 1, for Rm=100 and By=0.001, 0.01, 0.1 and 1, the kinetic energy, the
total magnetic energy (including that of the imposed field By) and the magnetic
length €5 are plotted, where ¢4 =(|B—B,|*/(|V X B|?). The last gives
information on the typical dissipative scale of the magnetic field. For the weakest
field strength considered, the kinetic energy remains steady and the magnetic
energy is periodic, with twice the frequency of the forcing. At the larger field
strengths, the kinetic energy is periodic and the magnetic energy either periodic
or quasi-periodic.

Clearly, for By=0.001, the field remains kinematic throughout the evolution.
Although the magnetic energy has been considerably amplified (by a factor
dependent on Rm), it remains very small in comparison with the kinetic

Proc. R. Soc. A (2009)
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energy. The amplitude of the field in the saturated state is determined by
diffusion in this regime, the Lorentz forces being negligible; a series of purely
kinematic runs reveals that, in the absence of the Lorentz force, the magnetic
energy scales as Rm”, with y=1.4. For By,=0.001, £5 is also determined solely
by diffusion, with £z o Rm'/? in the kinematic regime. For By=0.01, the field is
just dynamically active, with small oscillations visible in the kinetic energy.
When By=0.1, however, the kinetic energy is notably reduced and the field is
obviously dynamical in its behaviour—the small-scale fields are amplified to a
dynamically significant strength despite the fact that the energy in the imposed
field is still very weak in comparison with the kinetic energy of the flow. For
By=1, even the imposed field has equipartition strength and no aspect of the
evolution can be thought of as kinematic. It should be noted that, for our
choice of forcing, i.e. that given by (2.10)—(2.12), a unidirectional imposed
magnetic field can never suppress the flow completely. In the limit of a very
strong field (in the z-direction), U-g is suppressed, as is the z-dependent
component of U-2; the magnetic energy of the final state is essentially B?/2
and the kinetic energy takes the value 0.75.

Figure 2 shows snapshots of the structure of the flow and field in the basic
state for the same imposed fields as in figure 1. For By=0.001, the field is so weak
that the flow is simply the Galloway—Proctor flow given by (2.10) and (2.11); the
evolution of the field is kinematic and the extent of the thin current sheets is
determined solely by diffusion. Small deviations from the Galloway—Proctor flow
start to appear when By=0.01. These become more pronounced for higher By,
with an accompanying thickening of the magnetic structures.

Given the importance for fast dynamo action (in the absence of Bj) of the
chaotic nature of the driving flow, it is important to examine any changes in
the chaotic properties of the flow brought about as By is increased. For flows of
the form wu(z, y, t), exponential separation of neighbouring fluid elements takes
place only in the zy-plane. Figure 3 shows the finite-time Lyapunov exponents for
four values of the imposed field. As expected, the chaotic nature of the fluid
trajectories is suppressed as the imposed field strength is increased, but this is a
fairly modest effect for values of By up to By=0.1. The average value of the
Lyapunov exponent falls from 0.162 when there is no imposed field, to 0.157,
0.151 and 0.104 when By=0.01, 0.1 and 1, respectively.

It is of interest to investigate the degree to which the divers bounds obtained
in §3a are satisfied. Table 1 lists the average quantities involved, together with
the ratio of the two sides in the various inequalities. It can thus be seen that the
bounds described by the inequalities in (3.5) and (3.7) are reasonably tight
(attained to better than within a factor of two) and also that they are fairly
insensitive to the value of Bj. The bounds (3.4), (3.6), (3.8), (3.9) and (3.12)
depend more strongly on By, but are shown to be rather loose for all the values
of B, considered.

(ii) Rm=1000

When Rm is increased to Rm=1000, the basic state exhibits much greater
temporal complexity. Figure 4 shows the evolution of the kinetic energy, magnetic
energy and magnetic length for four different imposed fields. For By=0.001,
the magnetic field is always kinematic, and the final state is simply periodic. Once

Proc. R. Soc. A (2009)
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Figure 3. Plots of the finite-time (¢=25) Lyapunov exponents for Rm=100 and (a—d) imposed
fields By=0, 0.01, 0.1 and 1, respectively.

the imposed field has strength By=0.01, the field is clearly dynamic; the kinetic
and magnetic energies vary on both the short time scale of the forcing and a much
longer scale (of period =100). Over the long period, the magnetic energy grows
gradually before plummeting drastically (and non-monotonically); the kinetic
energy essentially does the opposite, declining slowly before rising abruptly.
When By=0.1, the final state has a chaotic time dependence and is one of
equipartition between the kinetic and magnetic energies. For the case of By=1,
for which the imposed field is close to equipartition strength, the evolution shows
a long-time transient before settling down to a quasi-periodic solution, which is
manifested most clearly in £5. The Lyapunov exponents are again reduced as the
imposed field strength is increased; the average value of the finite-time Lyapunov
exponent evaluated at t=25 falls from 0.168 when B;=0.001 (marginally, but
probably not significantly, above its kinematic value) to 0.151 when By=0.01,
0.107 when By=0.1 and 0.073 when By=1.
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Table 1. Average quantities required for the calculations of the bounds for Rm=100, together with
a measure of the tightness of the various bounds; R(3.4), for example, denotes the ratio of the left-
hand side of inequality (3.4) to the right-hand side; R(3.5ac) compares the first and third
components of the multiple inequality (3.5).

By 0.001 0.01 0.1 1.0
(U%) 1.5 1.488 1.152 0.865
(w?) 1.5 1.486 1.195 1.085
(VU |?) 1.5 1.488 1.166 1.013
(| Vw]|?) 1.5 1.486 1.23 1.232
(B}) 2.079x107* 0.0203 0.512 1.75
(B? 6.003%x10~* 0.0603 0.767 1.785
(|VBy|?) 0.00795 0.767 19.862 15.99

(|V B 0.0109 1.066 14.86 12.24
(BE) 1.55%x107" 0.00151 0.926 4.34
(BY 2.882x107° 0.0306 2.844 11.06
R(3.4) 0.106 0.103 0.0984 0.0278
R(3.5ac) 0.577 0.575 0.519 0.499
R(3.5bd) 0.577 0.579 0.586 0.575
R(3.5bc) 0.577 0.579 0.595 0.613
R(3.6) 0.159 0.156 0.178 0.0466
R(3.7ac) 0.577 0.575 0.508 0.447
R(3.7bd) 0.577 0.578 0.596 0.549
R(3.7bc) 0.577 0.578 0.599 0.595
R(3.8bc) 9.69X107° 0.00948 0.132 0.109
R(3.9bc) 7.07X107° 0.00682 0.177 0.142
R(3.12) 0.118 0.117 0.0667 0.0142

Table 2 contains the appropriate information for the various bounds for
Rm=1000. The overall picture is the same as for the case of Rm=100. Bounds
(3.5) and (3.7) are reasonably tight and fairly insensitive to By; the others
are again more dependent on By, but are always rather loose.

4. Dynamo action

In this section, we examine the evolution of linear perturbations, of both b and w,
to eight basic states (Rm=100 and 1000; B,=0.001, 0.01, 0.1 and 1), exploring a
range of wavenumbers k. Once a stationary basic state has been attained, we
evolve the perturbation equations (2.5)—(2.8) in concert with the basic state
equations (2.1)—(2.4), and then use the long-time behaviour of the perturbations
to obtain their average exponential growth (or decay). This is a well-defined
procedure provided that averages are taken over times long compared with the
time scale of variation of the basic state. Some care is therefore needed for the
case of Rm=1000 and By=0.01, for which the basic state varies on a very long
time scale; this is addressed in more detail below.

In the absence of an imposed field, equations (2.5) and (2.6) decouple. For
Re=1 and B,=0, the flow is stable to three-dimensional disturbances and so
perturbations in velocity decay exponentially; for wavenumbers k, such that the
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Figure 4. Plots of (a) kinetic energy, (b) magnetic energy and (c) magnetic length £5 versus
time for the basic states with Rm=1000 and (i)—(iv) imposed fields By=0.001, 0.01, 0.1 and
1, respectively.

Galloway—Proctor flow acts as a dynamo, perturbations to the magnetic field
grow exponentially. For all values of the imposed field strength considered, even
when By=1 and the imposed field is essentially of equipartition strength, the
magnetic energy of the perturbations greatly exceeds the kinetic energy. This can
be seen in table 3, which contains the ratio of the energies for the modes of
maximum growth rate. This indicates that the growth of disturbances is
analogous to a dynamo instability rather than any possible hydrodynamic
instability. For Rm=100, this ratio of energies is a monotonically decreasing
function of By. Figure 5 shows snapshots, for four values of By, of the
eigenfunctions of the modes of maximum growth rate. The velocity and vorticity
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Table 2. Average quantities required for the calculations of the bounds for Rm=1000. (Averages
for those cases for which the temporal evolution is chaotic are taken over an interval of length
approximately 600.)

By 0.001 0.01 0.1 1.0
(UZ) 1.498 1.368 0.877 0.763
(w?) 1.497 1.323 0.948 0.993
(|VUx|?) 1.498 1.377 0.923 0.960
(|Vw]|?) 1.497 1.361 1.024 1.209
(B%) 0.00404 0.228 1.187 2.004
(B% 0.01707 0.663 1.639 2.086
(|VBy|?) 1.455 78.86 318.4 96.67

(|V B 2.279 72.48 241.6 59.8
(BH) 8.505X107° 0.535 5.58 6.366
(BY 44631073 7.91 10.66 21.18
R(3.4) 0.0746 0.0431 0.0822 0.0112
R(3.5ac) 0.577 0.542 0.460 0.471
R(3.5bd) 0.578 0.579 0.590 0.544
R(3.5bc) 0.578 0.587 0.613 0.600
R(3.6) 0.128 0.0913 0.134 0.025
R(3.7ac) 0.577 0.551 0.442 0.413
R(3.7bd) 0.578 0.585 0.609 0.508
R(3.7bc) 0.578 0.587 0.625 0.570
R(3.8bc) 0.00203 0.0644 0.215 0.0532
R(3.9bc) 0.00129 0.0701 0.283 0.0859
R(3.12) 0.0519 0.0408 0.0116 0.00162

Table 3. Ratio of magnetic to kinetic energies in the eigenmodes of maximum growth rate.

By=0.001 B,=0.01 B,=0.1 By=1.0
Rm=100 37 000 360 100 25
Rm=1000 7500 150 360 170

fields are large scale, reflecting the low fluid Reynolds number. The thickness of
the dominant magnetic structures increases with By as the coupling between the
flow and field becomes more pronounced.

Figure 6 shows the growth rates for Rm=100. The cases of By=0.001
and By=0.01 are essentially unchanged from that for a purely kinematic dynamo
(i.e. with By=0); as k is increased, modes of differing symmetries become
dominant (see Courvoisier 2008), leading to a non-monotonic dependence of
growth rate on k. Increasing the strength of the imposed field has a clear
stabilizing effect, reducing the growth rates and also decreasing the range of k
over which instability occurs. When By=1, the instability is weak and is confined
to a narrow range of k£ (0<k<1.2).

For Rm=1000 and in the absence of an imposed magnetic field, although the
most unstable mode is unchanged from that when Rm=100 (i.e. £k=0.57 with
growth rate=0.3), the range in k of unstable modes increases, and the growth
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Figure 5. Snapshots of the perturbation eigenfunctions for Rm=100 at z=0 showing the
z-components of (a) vorticity, (b) velocity field, (¢) current and (d) magnetic field, for the modes of
maximum growth rates for (i)—(iv) By=0.001, 0.01, 0.1 and 1.0, respectively. Each image is
scaled individually.

rate of unstable modes at higher % also increases. This can be seen by the
By=0.001 curve (essentially equivalent to that when By=0) in figure 7, which
plots the growth rates versus k for Rm=1000. Similarly to the case of Rm=100,
the effect of increasing B, is, generally, stabilizing, although the picture is a
bit more complicated. The mode of maximum growth rate is clearly stabilized,
with a slight shift also to smaller k£ as By is increased. The modes at higher &
are also shifted with By, leading to a non-monotonic dependence of growth rate
on By for certain values of k. Inspection of table 3 shows that the linear
eigenfunctions are again ‘magnetically dominated’; the non-monotonicity in By,
of the energy ratio suggests a change in the nature of the most unstable mode
fOI' BOZOI
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Figure 6. Plot of the growth rates versus k for Rm=100 and four different values of B,.

growth rate
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Figure 7. Plot of the growth rates versus k for Rm=1000 and four different values of Bj.

As mentioned above, some care is needed in determining the growth rate
for the case of By=0.01, for which the basic state has a systematic long-
time variation. The growth rates shown in figure 7 are calculated over a time
interval of duration approximately 80, chosen so as to avoid a disruptive event.
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Figure 8. Plot of the growth rate versus Rm for fixed values of By=0.1 and k=0.6.

During such events, characterized by a rapid change in the basic state magnetic
and velocity fields, the linear perturbations do still continue to grow, but at
a reduced rate.

Finally, we turn our attention to the problem that motivated the original study
of Galloway & Proctor (1992), namely whether the kinematic dynamo growth rate
is bounded away from zero as Rm— o« for a fixed value of the wavenumber & (fast
dynamo action). Here, in our modified problem, the crucial feature is that, at
sufficiently high values of Rm, any imposed field, whatever its strength, will become
dynamically significant. Thus, the problem in the high Rm limit for any non-zero B,
will necessarily assume a different character from that in the absence of an imposed
field. Here, we choose to fix By=0.1, a weak field compared with the equipartition
value, to set k=0.6, essentially the mode of maximum growth rate for By=0, and to
increase Rm. Figure 8 plots the growth rate versus Rm. For Rm<100, the
dynamical significance of the magnetic field is weak and the unstable mode is
therefore a slight modification to that of the kinematic case. For Rm=100, the
Lorentz force becomes influential in determining the basic state and the most
unstable mode assumes a different character. For Rm=200, there is only a slight
variation in growth rate with Rm; on this numerical evidence, we may therefore
tentatively conclude that this modified dynamo action is also ‘fast’. For a smaller
value of the imposed field, we would expect a similar picture, but with the
transition between the two modes occurring at a higher Rm.

5. Conclusion

We have extended the classical kinematic dynamo problem, in which the velocity
is prescribed and one examines the possible exponential growth of a weak
magnetic field, in order to consider the linear stability of fully nonlinear MHD
states, obtained from a specified z-independent forcing and an imposed, initially
uniform, horizontal magnetic field By2. This is feasible since the perturbations,
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which are fully three-dimensional, can be distinguished from the basic states,
which, by construction, depend spatially only on x and y. Mathematically, the
problem involves the solution of linear equations for the perturbations of both
the magnetic and velocity fields, in concert with solutions of the two-dimensional
nonlinear equations for the underlying basic states.

In the absence of an imposed field, the problem reduces to the well-studied
kinematic dynamo problem for the Galloway—Proctor flow. The basic state flows
formed by the forcing (2.12) acting on an imposed uniform field increase in
complexity as Rm is increased, as can be seen from a comparison of figures 1
and 4. The stability of these nonlinear MHD states is enhanced as By increases,
as shown by figures 6 and 7. As is well known for turbulent flows at high Rm,
even a weak large-scale field (of equipartition strength divided by some power
of Rm) can lead to dynamically significant small-scale fields. Such behaviour can
be identified in our model, where it can be seen that the imposed field has a
dynamical influence on the basic state once RmBZ is O(1). It is, however,
noteworthy that dynamo action can continue in the presence of a significant
background field; there is no analogue of the strong quenching of mean field
transport coefficients by weak large-scale fields. This is because our model does
not represent a two-scale process. The normal dynamo properties of the
Galloway—Proctor flow cannot be described in terms of an a-effect, except when
k<1, and such modes are not preferentially excited. The same remarks hold
here, as may be seen from figures 6 and 7. For O(1) values of k, the system is
really a ‘small-scale’ dynamo, with no distinction between large and small scales.

The motivation for the original study by Galloway & Proctor (1992) was to
investigate whether kinematic dynamo action is fast. In our system, the limit of
Rm— o with By#0 is guaranteed to be distinct from the limit of Rm— % with
By=0; as discussed earlier, an imposed field, however weak, will become
dynamically important for sufficiently large Rm. (Different effects will occur,
however, in a real two-scale dynamo.) This is shown in figure 8, in which a
change in behaviour as Rm is increased is clearly seen. That said, it does appear
from the numerical evidence available that the instability of the nonlinear MHD
state can also be designated as fast.

Finally, it is of interest to discuss briefly the differences between the approach
adopted here, in which we solve the coupled equations (2.5)—(2.8), and that
considered recently by Cattaneo & Tobias (2008) and Tilgner & Brandenburg
(2008), who considered how a kinematic magnetic field might evolve under the
influence of a statistically steady velocity field modified by the Lorentz force. For
our system, this would be equivalent to solving the single linear equation

%+ U-Vb=0b-VU + Rm 'V’b (5.1)
in conjunction with solving equations (2.1)—(2.4) to determine the velocity U.
For comparison, we have carried out this procedure, which of course is
not the same as that adopted in this paper, and find, as do Cattaneo & Tobias
(2008) and Tilgner & Brandenburg (2008), that instability is enhanced. In our
model, this amounts to modes, that are unstable under the full perturbation
system (2.5)—(2.8), having a greater growth rate when governed only by (5.1),
and, indeed, also to some modes that are stable under the full system being
unstable in the abridged formulation.
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