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Abstract

The influence of the flow helicity on kinematic fast dynamo action is considered. Three different flows are studied,
possessing identical chaotic properties but very different distributions of helicity (maximal helicity, zero net helicity and
zero helicity density). All three flows provide strong evidence of fast dynamo action, indicating that helicity is not a crucial
feature of fast dynamo flows. Comparisons are made between the magnetic fields generated by the three flows and it is
established how certain key quantities scale with the magnetic Reynolds number. In particular, it is shown that the relative
magnetic helicity tends to zero as the magnetic Reynolds number tends to infinity.

Cosmic magnetic fields are believed to be generated
by the inductive motion of highly conducting fluids -
dynamo action. In the simplest (kinematic) form of
the dynamo problem the magnetic field B and fluid
velocity u are related solely through the (dimension-
less) induction equation

B=V x (ux B)+ R;'V*B, (1)

where R, is the magnetic Reynolds number. The aim
of kinematic dynamo theory is then to seek veloc-
ity fields that lead to the exponential growth of the
magnetic energy density (B*/2), where the average is
taken over the volume of fluid V. It is useful to dis-
tinguish between two general types of dynamos; large
scale (mean field) dynamos, in which the magnetic
field has a scale of variation much larger than the ve-
locity correlation length £, and small scale dynamos in
which the magnetic field varies on scales comparable
with or smaller than ¢. It is well known that a neces-
sary condition for large scale dynamo action is that the
underlying velocity field lacks reflectional symmetry,

i.e it has a definite handedness [ 1]. One of the most
natural measures of the lack of reflectional symmetry
is the (kinetic or flow) helicity, defined by

H=/hdx3, (2)
J

where £ = u - V x u is the helicity density. Indeed,
typically there is a strong relationship between the a-
effect of mean field electrodynamics (responsible for
mean field regeneration) and the flow helicity (al-
though it is possible to have an a-effect with no he-
licity {2]). Helicity is generated naturally in rotating
systems and, for this reason, all models of planetary,
stellar and galactic dynamos have been based on heli-
cal flows. The handedness of the resulting large scale
magnetic field is then determined by the handedness
of the underlying turbulent flow; again this lack of re-
flectional symmetry is often manifested by non-zero
magnetic helicity, defined by
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Hp = /hgdx-‘. (3)
J

where iy = A-V x A, with B=V x A. An interpre-

tation of this quantity in terms of linkages of magnetic

field lines has been provided by Moffatt [3].

In the case of small scale dynamos the interesting
question concerns the possibility of dynamo action in
the limit of vanishing magnetic diffusivity (i.e. R, —
x ) — so-called fast dynamo action. It is well known
that a necessary (though not sufficient) condition for
tast dynamo action is that the flow be chaotic (i.e.
has positive topological entropy). For flows that are
steady solutions of the incompressible Euler equation
this can be achieved only if the flow has the Beltrami
property, V x u = Au with A constant [4]. Obviously
such flows are maximally helical. However, in gen-
ceral. the relation between the kinetic helicity of the
underlying flow, small scale dynamo action and the
magnetic helicity of the generated field is not at all
well understood. In this letter we address these issues
by considering three specific flows. They are related
in that they have identical chaotic properties - mea-
sured, for example, by their Lyapunov exponents - but
they differ markedly in their helicity distributions. In
addition the flows are chosen all to possess the same
kinetic energy.

We consider incompressible flows of the form

w(x. v, 1) = (dah, —d b w),  dup = d.w =0.

(4

With such velocities the induction equation supports
solutions of the form

B(x.r) = B(x.v.1)exp(ikz), (5)

and hence, for a fixed k. the resulting problem for the
magnetic field is two-dimensional. Consequently, (1)
can be solved numerically for quite large values of Ry,
(O(10%)) without undue difficulty, thus facilitating
the numerical investigation of fast dynamo action [5-
8].

Fast dynamo action may be regarded as a compe-
tition between the exponential stretching of the mag-
netic field lines on the one hand and the effects of dif-
fusion on the other. For flows of the form (4) expo-
nential stretching takes place solely in the x-v plane,
independently of w. The influence of w is felt only

in the folding of the magnetic field; this may be con-
structive, thus generating significant magnetic flux, or
destructive, bringing together fields of opposite sign,
which are then annihilated by diffusion.

For all our computations we take, say,

U= \/TE[cos(x +cost) + sin(y +sint)]
= VIS5f(x, 1), (6)

We have chosen to focus on this particular form of ¢
as it is a flow that has already received some attention
and one whose chaotic properties are well documented
[5,7.8]. However, there is nothing intrinsically special
about this form of ¢; it is simply one member of a
family of flows that act as fast dynamos [9].

We consider three different forms for w. First (flow
V1) we take w = i/, as in Ref. [5,7]; the flow is then
maximally helical with & = —|u|*. For our second
flow (V2) we take w = \/ﬁ(f2 — 1), where the
multiplicative constant is chosen to ensure that the
energy is the same as that of flow VI; this flow (which
has zero mean velocity) has non-vanishing / (except
at isolated points) but zero H. For our third flow (V3)
we seek a form of w such that # = 0 (and also,
trivially, H = 0). Setting h = 0 leads to the first-order
PDE

Yow, + il’y Wy = szl/h (7

which, for ¢ of the form (6), has the general solution

w=sinX cosY

x F((cosec X —cotX)(secY +1tanY)), (8)

for arbitrary functions F, where X = x + cost and
Y = y + sint. The simplest form is obviously to take
F = const. (thus giving a flow free of singularities)
which we take to have the value v/6 so as to have the
same kinetic energy as the other two flows.

We have solved (1) numerically for each of the
three flows described above, for a range of R,,. At
any given Rp, the growth rate i1s maximised for a cer-
tain value of k; at large Ry, this value, whichis O(1),
becomes virtually independent of R,. For flow VI,
following Ref. [5], we take & = 0.57. For flows V2
and V3 the optimal values are found to be k& = (.58,
essentially the same as for flow V1, and k = 1.4 re-
spectively. Fig. 1 plots the growth rate of the magnetic
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Fig. 1. Dynamo growth rates for the three flows calculated by
fitting an exponential over long time traces of (B)”.

Table 1

Growth rate o evaluated at Ry = 2560 for VI and V2 and at
Rm = 3620 for V3: y, is defined by H, ~ Ry 7' y2 by Ig ~ Ry
and y3 by 14 ~ R

Flow o K D> Vi b Y3

Vi 0.297 0.12 1.58 0.69 0.49 0.16
V2 0.293 0.17 1.61 0.62 0.44 0.17
V3 0.214 0.25 1.58 - 0.46 0.19

field versus Ry, for the three flows; the values are con-
tained in Table 1. Flow V1 reaches its asymptotic state
for Ry & 100, with very little variation in the growth
rate as Ry, is increased beyond this value. The growth
rate of the field for flow V2 settles down at somewhat
larger Ry, but again provides convincing evidence of
fast dynamo action. Flow V3, with no helicity den-
sity. is certainly a more sluggish dynamo and, with the
chosen k. does not even act as a dynamo for Ry, < 40.
(Flow V3 does act as a dynamo for small values of
Rm. but only for smaller values of k.) Consequently
the asymptotic regime is not attained until higher val-
ues of R, (compared to flows V1 and V2) and the
evidence for fast dynamo action, although suggestive,
is less compelling than that for the other two flows.
Given that all three flows have identical chaotic
properties it is of interest to enquire as to how the re-
sulting magnetic fields differ. Fig. 2 shows the mag-
netic helicity density hp of the eigenfunctions at the
same cpoch for the three different flows. The large

Fig. 2. Plots of the magnetic helicity density on the plane z =0
at the same instant.

scale structure results from the exponential stretching
in the x-y plane and hence is the same for all three
flows. The influence of w can be seen in the variations
in the small scale structure - this is most noticeable in
the magnetic field generated by flow V3. Other signed
measures of the magnetic field (such as the current
density) yield the same qualitative picture.
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The rapid changes in sign of a complicated mag-
netic field, as Ry, — oc, can be quantified by means
ot the cancellation exponent, x [ 10]. The idea of the
canccellation exponent is most clearly seen by consid-
ering a scalar function of x, g(x) say. Suppose the
range of interest on the x-axis is covered by disjoint
intervals of equal length €, and then define

xle) = Z!/q(.r)dx

where €; 1s the ith interval of size €. Then « is defined
by the scaling law

) (9)

L.

x(e)~€" as € — 0. (10)

There are natural extensions of this definition to higher
dimensions. where y(e€) is related to the signed flux
through a plane (see Ref. [11]). For most physically
relevant cases sign changes occur on scales down to
some diffusive cutoff 8, below which the function be-
comes smooth. Definition (10) is then interpreted as
applying to scales larger than . In such cases « also
expresses a relation between the ratio of the unsigned
flux F to the signed flux ¢ and the diffusive cutoft &
{12.13}. Here 6 ~ R;”z and, by using a normalised
version of (9) in two dimensions. together with (10).
we obtain the expression

Ry = F'/d7" ~ R, (1

We define F as the average of the unsigned flux of B
on the planes £ = 0and z = 7/k and & as the average
of the squares of the unsigned fluxes of B, and B,
(B=(B,.By,B3)) ontheplanes z =0 and z = 7/k.
In comparison with expressions (9) and (10), relation
(1) provides an alternative means of evaluating « in
terms of more easily measurable quantities [ 7].

Fig. 3 shows R as a function of R, for all three
flows. Since R» is an oscillating quantity each data
point is computed as a time average over many flow
periods, where the range of the oscillations is denoted
by the vertical bars. The scaling relation (11) is clearly
well satisfied over the entire range of R; the values
of k thus computed are contained in Table 1. Clearly
K(V1) < k(V2) < k(V3), which is also retlected 1n
the differences in the fine structure of the eigenfunc-
tions.

It should be noted that, for a given ¢, all flows of the
form (4) have the same stretching properties and that
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Fig. 3. Plots of R; and Ry versus Rn. Each data point represents
the time average over many flow periods and the vertical bars
denote the amplitude of the oscillations. For all but one case the
range of the oscillations is small and contained within the plotting
symbols.

therefore any difference in dynamo growth rate must
be due solely to differences in enhanced diffusion.
The latter depends on the rate of exponential growth
of gradients, as measured by the smallest Lyapunov
exponents Az, and on the sign changes of the magnetic
field, as measured by x. However, for all these flows
Az is the same and therefore the differences are due
solely to differences in cancellation exponent. Thus
the flow with the largest (smallest) « gives rise to the
smallest (largest) growth rate.

We now turn to the connection, if any, between
the flow helicity and the magnetic helicity. For the
kinematic dynamo problem the magnetic helicity Hpg
(which is gauge invariant) grows exponentially; it is
thus more convenient to work with the relative mag-
netic helicity, defined by
H: = q\A—qu (12)

(A2)1/2(B2y1)2
which is a stationary quantity. The relative helicity is
obviously not gauge invariant; we choose A to be peri-
odic with zero divergence and zero mean. Fig. 4 shows
the variation of H, with Ry, for flows V1 and V2; as be-
fore, each data point represents the time average over
many periods. For flow V3, with zero kinetic helic-
ity density, although H; typically is non-zero (though
small) at any instant, it oscillates in sign and gives a
zero time average. For flows V1 and V2, H; is pos-
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Fig. 4. Relative magnetic helicity as a function of Rn. Each data
point represents the time average over many flow periods: the
amplitude of the oscillations in H; is smaller than the size of the
plotting symbols. ‘H. for flow V3 is absent as it has zero time
average. The values for the scaling exponents are given in Table |.

itive and satisfies H. (V1) > H,(V2), ie. the flow
with greater helicity generates a more helical magnetic
field. It is of interest to note that flow V2, with no net
helicity, generates an eigenfunction of positive mag-
netic helicity although, of course. changing the sign of
w (and hence /1) yields the corresponding eigenfunc-
tion with negative magnetic helicity. The most signif-
icant point to note from Fig. 4 is that H; decreases
with increasing Rp,. obeying a strict power law depen-
dence. Thus the relative magnetic helicity for any fast
dynamo will be vanishingly small, regardless of the
helicity of the driving flow (cf. Ret. [14]). One pos-
sibility is that this is somehow related to the fact that
‘Hp is an invariant when R, is infinite. However, this
cannot explain why the relative current helicity, with
the electric current J replacing A in (12). also de-
cays with increasing Ry, even though (J - B) is not an
ideal invariant. A more likely explanation is that the
result is related to the appearance of rapid fluctuations
in hg, associated with the rapid fluctuations in A and
B as R,, — >c. To see this, we note that if the helicity
density obeys a relation analogous to (11), namely

(A B)|/{|A- B|) ~ R.“. (13)

with a > 0. then the result tollows trivially from the
Cauchy-Schwarz inequality.
A characteristic feature of magnetic fields generated
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Fig. S. Characteristic length scales of B and A versus versus Rp.

by fast dynamo action is their rapid variation on short
length scales. A characteristic length scale for the mag-
netic field is often defined by /5 = (B%)1/2/(J2)V/2,
Note that this quantity depends on both the local scale
of B and also on the filling factor. Fig. 5 shows that
for all three flows the scaling law for /p is close to

Rn:l’/z. It is worth noting though that this result is
more than a simple statement that diffusion sets in
at such a scale - it also implies that the filling fac-
tors of B and J possess the same scaling with Ry, as
R, — =c. The vector field A, for instance, has the
same O(R;”z) diffusive cutoff as B; however, as can
be seen from Fig. 5, the length scale of A (defined
by 14 = (A%)Y2/(B*)!7?) falls off appreciably more
slowly with R,,. Care must therefore be taken when
defining magnetic length scales as different measures
of the field possess ditferent scaling laws (cf. Ref.
[14]).

The differences in the scaling with Ry, of /4 and I
may be attributed to the structure of the eigenfunctions
at small lengthscales. Suppose that the eigenfunction
of the magnetic field develops a singularity propor-
tional to |x - 7|~ along a line with normal n and with
diffusive cutoff at |x - n| ~ Ru''”. Then simple order
of magnitude estimates yield

(B F~ ROV (provided @ > 1/2). (14)
(I 2~ RlaTB (15)
(AH' 2~ 1 (provided a < 3/2). (16)
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Thus, whatever the value of a, Iz should scale as
Rm 172 The discrepancies in the calculated values of ¥,
for flows V2 and V3 are presumably due to not being
fully in the asymptotic regime and the integrals thus
picking up contributions from scales slightly larger
than the diffusive cutoft. It is also easy to see that a
and ys are linked by the simple relation & = 2y3+1/2,
giving values of @ = 0.82 (V1), a =0.84 (V2), a =
0.88 (V3). Soward [15] has stressed the importance
of the singularities in the flow and has shown how, for
a particular pulsed flow model, they are linked with
certain fixed points of the flow. It would be of interest
to try and confirm a similar relationship for the flows
considered here.

The fractal dimension D, of the set containing most
of the magnetic energy can be calculated by an ex-
pression similar to (11) {12,13,7], namely

R3 = M/FZ ~ R:T‘DMDZ)Q, (17)

where M is the magnetic energy and D is the dimen-
sion of the flow in which exponential stretching occurs
(equal to 2 for flows of the form (4)). In general, D;
depends on both the stretching and cancellation prop-
erties of the flow, i.e. on A, the largest Lyapunov ex-
ponent, on A3 and on . Flows of the form (4) have
the same A; and A3 and hence differences in D> can
arise only through differences in x. As can be seen
from Fig. 3, which plots Rz versus Ry, the three flows
yield very similar values for D, (given in Table 1),
thus showing that for the cases we have considered
the dependence of D; on « is slight.

In this Letter, by focusing on three flows with iden-
tical chaotic (stretching) properties but very differ-
ent helicity distributions, we have demonstrated that
small scale fast dynamo action does not seem to rely
crucially on the helical nature of the driving flow. Al-
though for the flows considered here it is true that the
dynamo growth rate increases with increasing helicity
of the flow we believe this to be coincidental. We have
argued that differences in the growth rate can derive
only from differences in « and we are unaware of any
connection between the helicity of the flow and the re-

sulting cancellation exponents, these depending on the
global properties of the trajectories. Concerning the
helical properties of the resulting magnetic fields, our
main finding is that the relative helicity for all three
cases is small, vanishing as an inverse power of Rp,.
We believe that this is due to the development of rapid
sign changes in the magnetic helicity density and, as
such, the result will be true in general.
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