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Given a prescribed flow of an initially unmagnetized conducting fluid, one can ask if a small
seed magnetic field will amplify exponentially with time. This is called the kinematic dynamo
problem. In many-cases of interest (particularly in astrophysics), very high electrical
conductivity of the fluid (high magnetic Reynolds number R, ) is relevant. In this paper the
kinematic dynamo problem is considered in the R,, — o0 limit (the “fast” kinematic dynamo).
It appears that an important ingredient for a kinematic dynamo in this limit is that the orbits
of fluid elements in the flow be chaotic. In this paper it is shown that the magnetic field tends
to concentrate on a zero volume fractal set, and, in addition, tends to exhibit arbitrarily fine-
scaled oscillations between parallel and antiparallel directions. Idealized analyzable examples
exhibiting these properties are presented, along with numerical computations on more typical
examples. For the latter a numerical technique for treating fast dynamos is developed and its
properties are discussed. The relation of the dynamo growth rate to quantitative measures of
chaos, namely, the Lyapunov exponent and topological entropy, is also discussed.

I. INTRODUCTION In Sec. IV we introduce a class of two-dimensional maps
as a model for fast chaotic dynamo action. Using these maps
we show that, as time goes on, the magnetic flux tends to
become more and more spatially intermittent, eventually
concentrating on a fractal set whose dimension we can calcu-
late in terms of the map parameters. Also using these mod-
els, we show that if any cancellation of magnetic field is pos-
sible, cancellation becomes more and more prevalent as time
goes on. That is, in the zero resistivity limit, the upward
directed fraction of the total magnetic flux through a surface
exponentially approaches the fraction that is downward
through the surface. This occurs on ever finer scales as time
proceeds. Thus there will be more and more rapid spatial
oscillation between large upward and downward magnetic
field vectors. The growth of net flux through a given surface
can still occur, however, if the exponential increase of the
upward and downward fluxes individually exceeds their rel-
ative exponential rate of approach toward each other. See
Bayly and Childress'® for a related discussion of the effect of
cancellation on dynamo action. The tendency toward can-
cellation and the tendency for the fields to concentrate on a
zero volume fractal set pose inherent difficulties for compu-

Magnetic fields are a pervasive phenomenon in the uni-
verse. They occur in planets (e.g., the Earth’s field), in stars,
in interplanetary space, as well as on galactic and intergalac-
tic scales.? A natural approach toward explaining the ob-
served prevalence of magnetic fields is formulated in the so-
called kinematic dynamo problem'™': Given a prescribed
Sfow of an initially unmagnetized conducting fluid, will a
small seed magnetic field amplify exponentially with time?

Since the flow is prescribed, the resulting equation for
the magnetic field is linear. The solution of the kinematic
dynamo problem, in general, depends on the particular flow
and on the electrical resistivity of the fluid. Zeldovich and
Ruzmaikin’!! distinguish between “fast” and “slow” dyna-
mo flows. In a fast dynamo, 7, the exponential growth rate of
the magnetic field, approaches a positive value as the resis-
tivity approaches zero. In a slow dynamo, ¥ becomes nega-
tive or approaches zero as the resistivity approaches zero.
This is illustrated schematically in Fig. 1, where the horizon-
tal axis is the magnetic Reynolds number R, = v,L,/7
(here v, and L, denote characteristic velocity and length
scales of the flow, 7 is the electrical resistivity of the fluid,
and we use a system of units where the magnetic permittivity
Mo is unity). The magnetic Reynolds number can be very
large in many situations (e.g., R,, ® 10®in the sun), and it is 14
consequently thought that only fast dynamos are of interest 4
in such cases.

It is the purpose of this paper to investigate fast dyna-
mos by studying the kinematic dynamo equation with zero
resistivity. Since the limit 7—0 is very singular'® (as will
become evident subsequently), it is not immediately clear —
how the solution of the % = 0 equation is related to the solu-
tion with a small but finite %. This question and the relevance
of chaotic flows to the fast dynamo problem are discussed in
Secs. IT and III.

FIG. 1. A schematic illustrating the growth rate y of fast and slow kinemat-
) And Department of Electrical Engineering and Department of Physics. ic dynamos.
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tational approaches to the dynamo problem at large R,,
(small 7). (The work in Ref. 16 also addresses the dynamo
problem using a map.)

In Sec. V we introduce a numerical method for studying
the existence of fast dynamo action via the zero resistivity
equation. The accuracy and limitations of the method are
tested on the simple analytically tractable maps introduced
in Sec. IV. Then the method is applied to a time-periodic
flow, which we believe has features typical of those to be
expected in practice. We find that here too the method is
capable of yielding useful results.

To close this section we mention several issues not ad-
dressed in the formulation of the kinematic fast dynamo
problem.

(i) The kinematic dynamo is a linear instability prob-
lem. If the magnetic field grows, the magnetic energy density
will eventually become of the order of the kinetic energy
density in the fluid flow. At this point the magnetic field will
self-consistently react back through the Lorentz force to al-
ter the flow velocity. The problem then becomes nonlinear,
involving the full set of magnetohydrodynamic (MHD)
equations. Thus, while a solution of the kinematic dynamo
problem can reveal why magnetic fields are present, it can-
not directly explain specific features observed in nonlinear
states (e.g., the magnitude of the Earth’s magnetic field, or
properties, such as spatial scales of sunspots).

(ii) In order for magnetic fields to be generated by a
kinematic dynamo, a small seed field must be present. One
possibility for creating such a seed field is thermoelectric
charges and currents driven by temperature gradients.’

(iii) Fast dynamos are argued to be important because
R,, = vy,L, /7 can be very large. In the calculation of these
large R,, values the classical formula for the resistivity due
to collisions is typically used. In plasmas with large currents
and thermal and density gradients, however, kinetic instabil-
ities (not described by the MHD equations) can occur.
These instabilities can drive short wavelength modes, which
generate a microturbulent state resulting in greatly en-
hanced resistivity.'”!®

Il. FAST DYNAMOS AND CHAOTIC FLOWS

We consider a fluid with velocity v, current density J,
magnetic field B, and electric field E. Maxwell’s equations
(with displacement current neglected) together with Ohm’s
law, J = E + vXB (where 7 is the resistivity), yield the
following equation for the magnetic field:

9B _ s (vXB) =LV,

at R,
where the spatial coordinates have been normalized to a
characteristic length for variation of v (denoted L, ), v is
normalized to its typical magnitude (denoted v, ), and the
time ¢ is normalized to L, /v,. For an incompressible flow
(V-v = 0), the above equation becomes

JdB 1

— + vVB = BVv + —V’B. 1
ot + + R (1
The basic kinematic dynamo problem is to solve this equa-

tion with a given velocity v(x,?). Generally, three classes of

m
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flows'! have been considered: (1) steady time independent
flows, v=v(x); (2) time-periodic flows, v(x,?)
=v(x,t + T), where T is the time period; and (3) turbu-
lent flows. Most of our specific considerations will be in the
context of time-periodic flows, although we believe that
some of our considerations (in particular, those in Sec. IV)
also can be fruitfully applied to steady and turbulent flows.
(The steady fast dynamo problem is particularly intriguing,
since it is currently not definitely known whether one is pos-
sible for smooth flows.®!%1*) For the case of steady flow, we
can take the field to be of the form B = b(x)e",s = ¢ — iw,.
For the case of a time-periodic dynamo flow, we can assume
the Floquet form, B = b(x,?)e”, with b(x,2) =b(x,t + T).
In either case, Eq. (1) yields an eigenvalue problem for the
eigenvalues s and the eigenfunctions b.

Formally taking the magnetic Reynolds number to in-
finity (# = 0) in Eq. (1) we have

98 | vvB=BWw. (2)
at

This is a hyperbolic equation with characteristics that are
the trajectories of fluid elements,
dx(t)
ar v(x(#),7). 3
It is instructive to consider a variation of x(¢). That is, we
consider two initial conditions, X, and %, + 6x,, where the
variation &x, is an infinitesimal vector, and evolve these ini-
tial conditions under (3) to new positions %(#) and
®(t) + 6x(¢). The variation 6x(¢) satisfies the equation

ﬂ = 6x*Vv, 4)
dt

with v = v{%(#),t). Comparing Egs. (2) and (4), we see that
B and 6x satisfy the same equation. [ This is a consequence of
the frozen-in-field condition (e.g., Ref. 6).] Thus it has been
suggested® that the exponential growth of Bin a fast dynamo
is connected with the exponential separation of nearby orbits
of fluid elements. For an equation such as (3) and an initial
condition &y, the Lyapunov exponent is defined as

Ay = lim (1/8)In[|6x(2) |/|6%,|]. (5)

Thus A is the average exponential rate of separation of two
nearby points. For a given £, this number is the same for
almost any choice of the direction of 6x,. (For special
choices of the direction of §x,, other, smaller, values of 4,
result. Here we are only concerned with the largest 4, .)
Flows with A, > O for a nonzero volume set of &, are said to
be chaotic. Thus chaotic flows are good candidates for fast
dynamos. In addition to the Lyapunov number, another
quantitative characterization of a flow is the topological en-
tropy, which, for our purposes, we define

/1T=m1:¢1x tlim(1/t)1n[||I(t)||/||10||], (6)

where /, denotesa finite length curve, /() is the image of this
curve under the flow (i.e., the curve that results by following
the trajectory of each fluid element on /, from time zero to
time ¢), and ||/, || and ||/(¢)|| are the lengths of these curves.
Thus A ; is the maximum exponential rate of increase of the
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length of a curve. In general, the inequality
Ar>AL

holds. As we shall discuss further, 4, can exceed A if there
is nonuniformity in the rate of stretching.

In Eq. (6) we have taken the topological entropy to be
the maximum exponential rate of growth of a line segment.
Actually, for a three-dimensional flow the conventional def-
inition of A - yields'® the larger of the maximum rate of expo-
nential growth of a line or of an area. Roughly speaking, if
the flow is stretching in only one direction then Eq. (6) coin-
cides with the conventional topological entropy, while if it is
stretching in two directions then area growth gives the con-
ventional topological entropy. For a two-dimensional area
preserving map or a steady incompressible flow, areas do not
expand faster than lines and Eq. (6) coincides with the con-
ventional topological entropy. For time-periodic flows or
three-dimensional volume preserving maps, it is possible
that areas can expand faster than lines, and then our defini-
tion, Eq. (6), would not coincide with the conventional to-
pological entropy. Nevertheless, in the remainder of this pa-
per we will take the term topological entropy to mean the
rate of exponentiation of a line, i.e., Eq. (6).

lIl. RELEVANCE OF THE ZERO RESISTIVITY EQUATION

We now wish to discuss the sense in which the solution
of Eq. (2) [which is the » = O version of Eq. (1) ] is relevant
to the solution of Eq. (1) with a small but nonzero 7. To
begin we assume that a fast dynamo exists and estimate the
smallest scale £ generated by Eq. (1) with finite resistivity.
We have the following orderings: VB/B~¢&~' and
V2B/B ~ £ ~%; due to the normalizations, Vv~ 1; since in the
zero resistivity limit, d B/dt=3d B/t + v-VB balances B-Vv
[Eq. (2)], we have B~ 'd B/dt~1. Thus the resistive term
sets the scale at'®

§~R — 1/2.

The action of the resistance is to smooth (i.e., diffuse) mag-
netic flux over the scale £ during a growth time [which is
O(1) for a fast dynamo]. However, on length scales long
compared to & the spatially averaged flux is little changed by
the diffusion during a growth time. (Note that this diffusion
implies magnetic reconnection when oppositely directed
fields occur within a distance of the order of £ of each other.)
Hence if we look at a surface S and calculate the flux through
it,

O = fB-d A,
S

then we expect O for the exponentiating field to be indepen-
dent of R,,, as long as the dimensions of S are large compared
to £ Thus consider the rate of growth of flux through S
calculated from Eq. (1) with magnetic Reynolds number
R .

m?

Fs(R,,) = lim sup(1/8)In|®¢ (1) /D5 (0)], (7

and the corresponding quantity calculated using the perfect-
ly conducting equation (2). We denote the latter quantity
I's. Weexpect I'g(R,,) to be the instability growth rate for
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the fastest growing mode at R,,, for typical choices of S and
B, (x), where B, (x) is the initial seed magnetic field which
we assume to be a smooth function of x. Since we have ar-
gued that, for any given surface S, the flux ® is independent
of R, forlargeenoughR,, (i.e., small enough £), we conjec-
ture that

lim F(R,) =T (8)
(assuming the limit exists as in Fig. 1). In particular, Eq. (8)
claims that the high magnetic Reynolds number instability
growth rate can be calculated by using the perfect conductiv-
ity equation (2) to obtain I'g. Furthermore, there is, or is
not, a fast magnetic dynamo for a given flow, v(x,t), accord-
ing to whether I is positive or not. In the remainder of this
paper we deal with the zero resistivity dynamo equation (2).

Before proceeding, however, we offer some comments
on the above discussion.

(i) A flow may have several disjoint ergodic chaotic
components, each with a different 4, . In such a case, it
seems reasonable that an eigenfunction of (1) would typical-
ly be confined to one such component in the limit R,,, - .

(ii) It is necessary to use lim sup rather than simply lim
in Eq. (7) to accommodate the possibility of a real frequency
for the fastest growing mode.

(iii) An alternative formulation of Eq. (8) is that the
t— o0 and the R,, — o limits of the flux exponentiation rate
are interchangeable:

lim limsup[ (1/7)In|®s(2)/Ps(0)|]

R, — —

= lir{n sup Rlim [(1/8)In|Dg (1) /D5 (0)]].

(iv) One does not need to speak of magnetic fields to
define I': we can take the flux to be that of 8x instead of B,
b = [ Oxd A, and I is unchanged. Thus, like the Lya-
punov exponent and the topological entropy, I' is purely a
dynamical property of the flow v(x,¢). Although A, and A,
are basic quantities in the ergodic theory of dynamical sys-
tems, 'y seems not yet to have appeared in this context.

(v) Let o be the fluid vorticity, @ = VXv. Then, the
evolution of @ in an ordinary uniform density incompress-
ible fluid (without magnetic fields) is given by

90 | vV = oWy + Lv2
E + vVo = o'Vv + RV ,
where R is the Reynolds number, R = L,v,/u, and u is the
viscosity. This equation is formally the same as Eq. (1). The
difference is, of course, that for the kinematic dynamo prob-
lem we can take v to be specified; here @ equals VX v and
produces an inherently nonlinear equation. Nevertheless,
there are similarities in the results for the two problems, and
these may be caused by the identical forms of the equations.
Specifically, in fully developed fluid turbulence there is a
cascade to smaller scale eddies, which occupy a smaller and
smaller fraction of the space (intermittency) eventually (it
is thought) concentrating on a fractal set as R — o (cf. Refs.
20-23). Our baker’s maps in Sec. IV may thus have some
relevance to the fluid turbulence problem.

(vi) Although it is conjectured that chaos is necessary
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for a fast dynamo of a spatially smooth flow,'* the presence
of chaos does not guarantee dynamo action. In particular,
consider the special case of a time-periodic, two-dimension-
al, incompressible velocity,

v=VdXzp, x=(x9), dxpt) =dxpyt+T).

Then dx/dt=v yields a map, x[(n+ 1)T]=x,,,
= F(x, ). Choosing for the streamfunction

p(x 1) = ¢,(x) Y 8(t —mT —e)

+ ¢,(») Y 8(t — mT — 2e),

where € is a small positive quantity, we have the map x,,

=X, + ¢;. (yn )’ Ynvt =Vn — ¢{ (xn+ 1 )’ where the prlme
denotes differentiation. For ¢; = — x, ¢; = K sin y, this is
the well-known standard map extensively used as a model
for Hamiltonian chaos. However, even though the flow may
be chaotic, no dynamo is possible in two dimensions (this is
related to “Cowling’s theorem,” e.g., Ref. 6). One can also
obtain an analogous result for steady space periodic flows
with Vo, = 0:

v = V¢ Xz, + voz;,

where ¢(x,y,z) = ¢(x,y,z + L). These flows also cannot be
dynamos (cf. Appendix A) but can be chaotic (e.g.,

¢ =0 [$1(x)5(z— mL — €) + ¢,(y)6(z — mL — 2¢)]

yields the same two-dimensional map as previously for the
transverse position (x,,y, ) at zlocations z, = nL = ny, T).
For a further discussion of this latter case see Appendix A.
Also, Ref. 16 demonstrates antidynamo behavior (i.e., I';
< 0) in the three-dimensional chaotic flows.

(vii) For flows that are not incompressible, the continu-
ity equation {dp/d¢ + V+(pv) = 0, where p is the mass den-
sity] yields in place of Eq. (1),

98B, v-v(E) B+ Lvm
dt p P/ p PR,

Thus the zero resistivity equation is the same for incom-
pressible flows and for compressible flows (with the replace-
ment B—B/p). Furthermore, for large R,, the length scale
of B, £~R ,, '72,is much less than that of p. (We assume that
the density is self-consistently evolved by the fluid equations
and therefore has length scales unrelated to R,,,.) Hence for
large R,,, p~'V*B=V?(B/p), and the compressible prob-
lem is the same as the incompressible problem. This is signif-
icant because some flows thought to lead to dynamo action
are compressible (for example, Rayleigh-Bénard convec-
tion cells in the sun).

(viii) Support for our conjecture, Eq. (8), comes from
the stretch—twist—fold examples that we treat in Sec. IV. In
particular, if we regard the stretch-twist-fold operation to
be done impulsively at times t =n7 (n =0,1,2,..., and we
take 7'~ 1 in our normalized units ), then finite resistivity has
no effect during the impulse. Between impulses we have d B/
dt = R 7 'V?B (i.e., the field evolves purely diffusively), and
the field will be smoothed over the scale £~R /2 Thus,

m

between the impulses, ®¢ will be little changed by flux diffu-
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sion if the dimensions of S are much greater than £. Further-
more, for these examples, when the impulse is next applied,
the smoothing has little effect: The total flux through the
torus in the examples is doubled independently of the distri-
bution of flux within the torus. ‘

(ix) Since the normalized equation without resistivity,
Eq. (2), has no dimensionless parameters, the growth rate of
the magnetic flux in normalized time is of order unity. That
is, in the dimensional units, the growth rate is of the order of
vy/Ly, the ratio of the typical velocity to the typical length
scale of the flow. For example, if the flow arises from Ray-
leigh-Bénard convection (i.e., the flow induced by the heat-
ing of a fluid layer from below in the presence of gravity),
one would estimate the fast dynamo growth rate to be of the
order of the turnover time of the resulting convective rolls.

IV. MODELS

The linear stability problem posed by the kinematic dy-
namo problem [Eq. (1)1, requires the specification of the
velocity field v(x,#) (which constitutes the zeroth-order
state about which the linearization is performed). Ideally,
one might desire to utilize a specific fluid flow arising from
realistic flows in specific situations (for example, the Ray-
leigh-Bénard thermal convection cells in the sun’s convec-
tion zone). In practice, this would be extremely difficult.
Our approach in this section will be less ambitious and is
similar to that followed by others. Specifically, we shall spec-
ify model flows that allow the possibility of analysis. The
idea is that the results so obtained will have general features
to be expected in fast kinematic dynamos that arise from
more realistic flows and that we can relate these features to
features of the flow. In particular, we will topologically spec-
ify certain flows (called stretch-twist-fold dynamos®),
which are chaotic in the sense discussed in Sec. II. We subse-
quently argue that certain properties of these analyzable
models are to be expected, in general, when one encounters
realistic flows that are chaotic. Evidence in support of this
statement is provided by the numerical computations of Sec.
VC.

A. The stretch-twist-fold process and baker’s maps

The paradigmatic model fast dynamo® is illustrated in
Fig. 2. At ¢t = O there is a toroidal flux tube with a circulating
flux &, [Fig. 2(a)]. The tube is then uniformly stretched to
twice its original length [Fig. 2(b) ]. Since the fluid is incom-
pressible, the tube cross-sectional area is now half of what it
was in Fig. 2(a). Since the magnetic field is frozen-in, the
circulating flux in the stretched tube is still ;. The tube is
then twisted into a figure eight [Fig. 2(c) ], and folded back
into the original volume occupied by the tube in Fig. 2(a)
[Fig. 2(d)]. The total circulating flux is 2, . Repeating this
sequentially, the circulating flux doubles each time produc-
ing a flux growth rate I' = (In 2)/T, where T'is the period of
the cycle. [ The repeated application of the process in Fig. 2
can be regarded as specifying a periodic velocity field
v(x,t) =v(x,t + T).]

Now say we follow the process in Fig. 2, but do the
stretching in a nonuniform way. Figure 3 illustrates an ex-
ample of what we mean by this. We start as before, Fig. 3(a),
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(c) (d)

FIG. 2. The stretch-twist—fold fast dynamo.

but now divide the tube into two unequal pieces, one taking
up a fraction a <} of the circumference, the other a fraction
B, with a + 8 = 1. We then stretch the lower piece by a

factor 1/a and the upper piece by 1/8. The lower and upper

pieces each now have the length of the original circumfer-
ence. Because of incompressibility, their cross-sectional
areas are now, respectively, a and £ times their original

areas [Fig. 3(b)]. Twisting and folding, as before, we again
double the flux but in a nonuniform way. That is, if we now
look at a cross section of the loop after the fold [Fig. 3(c) ], it
will consist of a small area a4 and a larger area 84 [ where A
is the original cross section in Figs. 2(a) and 3(a) ]. Each of
these two component areas has the same flux through it
(namely, ®, ), and the field is higher in the @ area than in the
BB area. Again the total flux is doubled and it continues to be

rAreu = BA

2 78R
Area=A S _ B
/ / Area
Norer
(a) (b)
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doubled on each repeated subsequent application of the
operations in Fig. 3. Thus the flux growth rate is again
(In2)/T.

What happens to the distribution of magnetic flux in a
cross section if the process in Fig. 3 is repeated many times?
To understand this (cf. Sec. IV B) we abstract the process
slightly by considering the two-dimensional map in Fig. 4.
Here we consider a perfectly conducting square sheet and
imagine that there is a uniform upward directed magnetic
field in the sheet. [ The y direction in Fig. 4(a) is analogous
to the toroidal direction in Fig. 3(a).] We now give the
square an incompressible deformation: we horizontally
compress the lower part of the square (0 < y < ) by a factor
a and vertically stretch it by 1/a; thus the area is conserved
(incompressible). Simultaneously we horizontally com-
press the upper part of the square (@ <y < 1) by B and verti-
cally stretch it by 1/8where 8 = 1 — a. This is illustrated in
Fig. 4(b). We then separate the two parts and cut the mag-
netic field lines between them [Fig. 4(c)]. The two pieces
are then reassembled into the original square [Fig. 4(d)].
The operation of cutting the field lines is nonphysical, but is
introduced to simulate the three-dimensional stretch—twist—
fold operation. It is this cutting of field lines that allows the
modeling of an inherently three-dimensional process by a
two-dimensional map. [Indeed according to comment (vi)
at the end of Sec. I1I, physical dynamos are impossible in two
dimensions.] Since the field is frozen-in, the flux through a
horizontal line (y = const) across the a strip and the flux
through a horizontal line across the B strip are each the same
as the flux through a horizontal line (y = const) across the
entire square in Fig. 4(a). Thus the flux across the whole
square in Fig. 4(d) is double that in Fig. 4(a), as is the case
for the nonuniform stretch-twist—fold operation of Fig. 3.
Also the ratio of the area that contains high field to the area
of low field is a/p for Fig. 4. Likewise, for Fig. 3 the ratio of
the volume containing high field to that containing low field
is also a/p.

Analytically we can express the map in Fig. 4 as

. _ [ax,,, if y, <a, (%)

T Bx, +a, iy, >a a
y./a, if y, <a,

yn+1 - [(y,, '—a)/ﬂ, lf y,, >a. (9b)

FIG. 3. Nonuniform stretch—-twist—fold.
In (b) the lengths above and below the
dashed line are both the original length,
27R. Part (c) shows the cross section
after the fold operation; the flux in the
aA and PA areas is the same, and thus
the field strength in the smaller a4 area
is larger.

(c)
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FIG. 4. Two-dimensional baker’s map of Eq. (9) corresponding to the
stretch—twist-fold of Fig. 3. The operation of cutting the field lines in (c)
allows the three-dimensional property of flux alignment (Fig. 3) in a two-
dimensional map.

For another justification of Eq. (9) as a model of the process
in Fig. 3, see Fig. 5 and its caption. [The map, Eq. (9),isa
special case of a class of maps called generalized baker’s
maps, which were introduced in Ref. 24 for the study of
strange attractors. |

In the processes illustrated in Figs. 2— 4 the magnetic
fluxes in the two components add when the process is com-
pleted [e.g., the B in the « strip and the B in the B strip are
both upward in Fig. 4(d)]. In Fig. 6 we illustrate an oper-
ation on a flux loop wherein some cancellation of flux is
produced after the completion of the process. The loop is
stretched, perhaps nonuniformly, to four times its original
circumference [Fig. 6(b)]. The lower quarter is given a
twist [Fig. 6(c) ], and then the result is folded back into its
original volume. The first part of the folding operation is
illustrated by the double arrows in Fig. 6(c) and its 1'esultl

y
2
y4 FIELD
LINE
[ 1+
4 ) = STRETCH =
> X ) +—>» X
I 2 ! 2
(a) / (b)
;" ;IFT "
2 2..
A
I H =TWIST= I M
T |
L » X 1 +—> X
1 2 1 2
(c) / (d)
FOLD TOP
vt BACKWARDS

74
“HIY

(e)

FIG. 5. This figure is essentially the same as the stretch—twist—fold illustrat-
ed in Fig. 3, except that we imagine the torus of Fig. 3(a) tobe beaten into a
thin sheet. The hole in the center of the torus is now the slit from (1,0) to
(1,1) [Fig. 5(a)]. The net result at the end of the cycle (a)—(e) is that the

2

- state of the square 13> (x,p)>0in (a) is related to that in (¢) by the map in

Fig. 4 and Eq. (9).

appears in Fig. 6(d). The final folding is indicated by the
double arrow in Fig. 6(d). Figure 7 shows a baker’s map
corresponding to Fig. 6. Figure 7(a) shows an initially uni-
form upward directed magnetic field in the unit square. The
square is composed of four horizontal strips of varying
heights (a,8,%,6) with a + 8 + ¥ + 6 = 1. Each strip is
given an incompressible vertical stretching, so that each is
now one unit long [Fig. 7(b)]. We then imagine the flux
lines to be cut [as in Fig. 4(c)] aty=1,y=2,and y=3.
Then the strip between y = 2 and y = 3 is rotated 180°, so
that its magnetic field is pointed downward, and the four
strips are then put back in the unit square [Fig. 7(c) ]. Ana-
lytically, Fig. 7 is the map,

(ax,, if 0<y, <a,
Bx, +a, if a<y, <(a+p),

Xpp1 =9 . (10a)
y(l—x,)+a+p if (a+B)<y.<(@+B+7),
(0x, +a+B+y, f(a+B+7V)<y.<];
(y./a, if O<y, <a,
., —a)/B, if a<y,<(@+8),

Inar = [(t@a+B+7)—y.1/v, if (@+B)<y.<(a+B+7), (100)
L[y, —(@+B+1]1/6, if (@+B+¥)<y. <1
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CENTRAL:
FIELD \
LINE

4X STRETCH

(o) (b}

FIG. 6. Deformation of a flux loop into itself with flux amplification and
partial cancellation. For clarity only the central flux line is shown in (b)-
(d). The final fold indicated by the double arrow in (d) restores the flux to
the volume occupied by the original loop.

Each strip in Fig. 7(c) has the original amount of flux in
it, but the direction has been reversed in the third strip.
Hence the total upward flux across the square in Fig. 7(c) is
twice the original flux, and repeated applications of the pro-
cess double the flux on each cycle. Thus the exponential flux
growth rate is again I’ = (In 2) /7.

] IBDO“

I A—
U

N 4 | [ATV
T —
f[ —1l

x
I lal B8 (3]
(a) (b) (¢)

folwk el

FIG. 7. Baker’s map corresponding to Fig. 6. The four strips in (b)
correspond to loops 1-4 in Fig. 6(c).
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If the third strip had not been flipped, the total upward
flux in Fig. 7(c) would be four times the original flux, and
the exponential flux growth rate would have been
I'=(n4)/T.

Cancellation can be included in two-strip baker maps
like that of Fig. 4 by flipping the 3 strip, or in stretch—twist—
fold cycles like that of Fig. 3 by omitting the twisting process.
For these two-strip maps, the total flux exactly cancels in
one iteration.

In the following subsections, we analyze the baker’s
maps (9) and (10) and on this basis we draw some general
conclusions concerning fast dynamos.

B. Lyapunov exponents and topological entropy
The Lyapunov exponent of the map Eq. (9) (Fig. 4) is**

PR In(1/a) + BIn(1/8)
L= .
T

From Eq. (5) weseethat A, is 1/7 times the average of the
logarithm of the stretch per iterate. Thus Eq. (11) can be
obtained if we view orbit points to be random and uniformly
distributed in y. Then the probability of an orbit point being
in O<y<a is a, and the probability of it being in
a<y<a+B=1isp. Thus Eq. (11) shows that the aver-
age logarithm of the stretch per cycle is the probability of a
stretch a ~! multiplied by In a ~' plus the probability of a
stretch 8 ~! multiplied by In 8 ~ ! Similarly, for the map Eq.
(10) (Fig. 7),

1 In(1/a) + BIn(1/B) + ¥ In(1/y) + 6In(1/6)
L — .
T

(11)

(12)

Maximizing Eq. (11) subject to a + 8 = 1, we find the
maximum A ; is In(2)/7, which occurs at @ = 8 = }; simi-
larly maximizing Eq. (12) subjecttoa+8 +y+6=1,
the maximum A, is In(4)/T occurring at a =B =y =46

= 1. In both cases A . is largest, and equal to A, when the
stretching is uniform (i.e., the same in each strip).

To obtain the topological entropy for the maps (9) and
(10) it suffices to consider an initially vertical line running
from y = 0 to y = 1. Equation (6) then yields

Ar=Un2)/T (13)
for the map of Eq. (9), and
Ar=(n4)/T (14)

for the map of Eq. (10). Comparing Egs. (11)-(14) with
the exponential flux growth rates I', we have the following:
(i) A, =T for Eq. (9); (ii) A>T for Eq. (10); (iii) A,
would be the same as I if the flip had not been introduced in
Eq. (10); (iv) A, <A, for both Egs. (9) and (10) with the
equality holding only when the stretching is uniform; and
(v) A can exceed I' for the map of Eq. (10) [depending on
(a,B,7,0) ]

Thus A, can be either larger or smaller than the maxi-
mum flux growth rate I'. In contrast, however, the topologi-
cal entropy seems to be more closely connected to I'. We
conjecture that, in general, '

A>T, (15)
with the equality applying when cancellations are absent
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(we expect the absence of cancellations to be an exceptional
case for typical flows encountered in practice). This conjec-
ture is based upon the idea that the dynamo growth rate, as
computed by Eq. (8), is less than or equal to the growth rate
of the “flux without cancellation,”

Bs = [ |Buldd,
S

where B, is the component of B normal to S. The topological
entropy, as defined in Eq. (6), is the exponential rate of
increase of a sum 2|6x, (¢) |, where the vectors 8x; are lined
up, head to tail, to form the curve?® /(¢). On the other hand,
&, is, by the equivalence of Eqgs. (2) and (4), proportional
to a similar sum, but where the tails of the vectors éx; are
distributed over the surface S. If all the points x; are located
in the same ergodic component, it seems reasonable that
there should be no distinction, as — «, between points dis-
tributed along a curve or on a surface.

The Lyapunov exponent A; and the topological entropy
A satisfy A; <A1 with equality only for uniform stretching
because 4, is the average of the exponential rate of stretch-
ing of 6x and A ; is the exponential rate of stretching of the
average of 6x (the log of the average of a quantity is greater
than or equal to the average of the log of the quantity).

C. Generation of small scales

In this subsection we consider the map Eq. (9) (Fig. 4)
as an example illustrating the generation of small scales in
chaotic fast dynamos. On one application of the map we
generate two strips [Fig. 4(d)], one of width a and one of
width 8. Now apply the map again. Each of the two strips is
stretched and compressed resulting in four strips, one of
width a?, one of width 82 and two of width af3. For n appli-
cations of the map, we produce 2" strips of varying widths,
a" "B™(m =0,1,2,...,n). The number of strips at time nT
having width a” ~ "8 ™ is given by the binomial coefficient,?*

Z(n,m) = nl/m!(n — m)\.

For large n, Z(n,m) is approximately Gaussian in m (this
follows from Stirling’s approximation),

7 2" 1 [ l(m-— (n/2))2]
(nym) = —exp| — —f ————

V27 n/4 2\ Jn/a

for |(m/n) — 1| <1. Thus, for large n, the quantity Z as a
function of m is strongly peaked around m = n/2 with a
width ~+/n. In particular, if we pick some fraction 6, then
for large n we can say that a fraction 8 < 1 of the 2" strips
have m values that lie within the relatively narrow range
14+ r/Nn > (m/n) >4— r/\/n (where r depends only on 8).
These strips all have roughly the same width, W, =a™?8 "
Furthermore, since each of the 2” strips contains the same
flux (whatever its width), these strips contain & of the total
flux. Thus the strips containing a fraction 6 of the flux occu-
py a total length in x of the order of

2"0(aB)* = [2Ja(1 = a) ]"6.

If the stretching is nonuniform (a#1), then the quantity
2[a(1 — a)]"? is less than unity. Thus the flux is concen-
trated on a set whose total length in x tends exponentially to
zero with time (i.e., increasing n).
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In fact this 7 — o limit set is a fractal whose dimension
we can calculate. One definition of the dimension?* of a set is
the capacity (or box-counting) dimension, which we denote
D,. If the set lies in an M-dimensional Euclidean space, D, is
defined as

D, =lim[In N(e)/In(1/€)], (16)
€~0

where N(¢) is the minimum number of M-dimensional
cubes of edge length € needed to cover the set. (In one dimen-
sion, M = 1, the “cube” is an interval of length €.) To calcu-
late the capacity dimension of the smallest set (along the x
axis), which in the limit as 7 — o contains a fraction 8 of the

flux, we set € = W, = (Jaf ). Then from the previous dis-
cussion, N(€) ~2", and we obtain a fractal dimension,

D,(6) = (In2)/In(1/\aB ), (17)

which is, in general (i.e., for @ #1), less than unity. Note that
Eq.(17) isindependent of @ for 0 < 8 < 1. For further discus-
sion and other concepts of fractal dimension®*?® see Appen-
dix B.

For general chaotic flows, nonuniform stretching is ge-
neric. Thus we expect that flux concentration on a fractal is
typical for fast dynamos in the R,, — o limit.

If at #n = 0 we start off with a uniform upward directed
magnetic field B;, then at iterate # of the map Eq. (9) there
are 2" strips in each of which the magnetic field takes on one
of the values B(n,m) = By/(a"~ "B ™), for m =0,1,2,...,n.
Assume we choose a point at random in the interval 0<x< 1.
What is the probability that the magnetic field at this point is
B(n,m)? Since strips with this magnetic field have width
a"~ "™ and number Z(n,m), this probability is
P(n,m) = a"—"B™Z(n,m). Again, using Stirling’s approx-
imation we obtain for large n

P(n,m) =(1/y2mnapB Yexpl — (m — nB)*/2naf |

for |m/n — B | < 1. Expressing m in terms of B(n,m), we see
that m is linearly related to the logarithm of B(n,m),

Ina In[{B(n,m)/B,]
In(a/B) In(a/B) '

Thus, since P(n,m) is approximately Gaussian, the proba-
bility distribution of the magnetic field at randomly chosen
points will be approximately lognormal in the long time lim-
it. [ Note, however, that the far tails of the lognormal will not
yield accurate results, since our Gaussian approximation to
P(n,m) is only good for |m/n — B| <1.] This approximate
lognormal property, although obtained above for a specific
model [Eq. (9)], can be plausibly argued to be a general
property of chaotic fast dynamos. The argument is as fol-
lows. Lognormal distributions result from the multiplica-
tion of many random numbers, a simple consequence of the
central limit theorem. As we integrate the chaotic trajectory,
the net stretchings of dx experienced within blocks of time
larger than a correlation time are essentially independent
and random. Thus, since the stretching process is essentially
multiplicative, we may expect that the long time field distri-
bution is lognormal. (For related discussions of lognormal-
ity within the context of fluid turbulence and strange attrac-
tors, see Refs. 20 and 24.)

m=n
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We now comment on the time evolution of the magnetic
energy for this model and the effect of finite R,,. As argued
in Sec. III, the diffusive nature of Eq. (1) implies that the
growth of flux through a surface is insensitive to R, as long
as R,, islarge enough. This is not so for the magnetic energy.
For Eq. (9) the magnetic energy U = §} §1 (B*/2)dx dy at
time n7T is related to that at time (n + 1) T by

U1 =(@ ' +87HU, = () 'U,,
or U, = U, exp(2ygnT), where

ve=T"'"In(1/Yyaf )>T 'In2

with the equality applying only for @ = . Thus we expect,
in general, yz>Ar>T, with equality only for uniform
stretching. For finite resistivity, the magnetic energy initial-
ly grows according to exp(2ygznT) until the scale length
approaches £ ~R '/ (see Sec. III). After a transition peri-
od, the energy should then grow as exp(2I'anT),
I' = (In 2)/T. Essentially what happens is that, during the
initial phase, the scale for variation of B decreases exponen-
tially. These rapid variations of B imply large currents, that,
through resistivity, lead to enhanced dissipation which even-
tually slows the growth of U to exp(2T'nT). Thus when
looking at the zero resistivity /imit of the growth rate via the
equation for B with zero resistivity (2), it is important to
examine the time evolution of flux through a surface rather
than the time evolution of the magnetic energy. This is be-
cause the former is insensitive to R,,, for large R,,, while the
latter is not. [ Another indication of why energy should not
be considered is that the fractal measure giving the magnetic
flux eigenfunction (Appendix B) has infinite magnetic ener-

gy.]

D. Tendency for cancellation

We consider the map (10) (Fig. 7). After n iterates of
the map, we will have 4" vertical strips. The magnitude of the
flux in each strip will be the original upward flux ¢,. Let
N, be the number of strips at time nT with upward flux,
and N_ the number with downward flux. The total flux dou-
bles on each iterate. After n iterates we have

2@y = (N, — N_)®,,

N, +N_=4"
Thus
N 1,1
N++N_ 2 2n+1
N_ _1 1
N, +N_ 2 om+t’

Hence the fraction of strips with upward (or downward)
flux approaches § exponentially fast in time. For n> 1 the
number of upward and downward strips is nearly equal. The
exponentially decreasing noncancellation,
(N, —N_)/(N_+N_)=2""is, however, what leads
to the growth of the total flux. This is because the number of
strips grows faster (namely, as 4") than the rate of decrease
of (N, —N_)/(N,+ N_) (namely, 2" ). In general, if we
pick a surface S and look at the “flux without cancellation,”
defined as
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& [18,las
S

where B, is the component of B normal to S, then we can
quantify the effect of cancellation by a quantity ¥,, which
gives the exponential rate of decrease of ®/®,

&/P ~exp( — 7.1).

Since ® ~exp(I'?) and 5~exp(/1rt), we have ' =4,
— 7. Thus ¥, can be interpreted as the damping caused by
the cancellation effect. If the cancellation effects are too
strong, then, as shown in Ref. 16, it is possible to have chao-
tic flows in which magnetic fields damp (i.e., there is no fast

dynamo). This corresponds to ¥.>A;. (In the example

above A;=T"'In4, y,=T"'ln2, T=Al,—7y.
=T"'In2.)

It will also be of interest to calculate the fraction P, , of
the area in 0 < (x,p) < 1, which has positive flux at time n7.
Letr = a + B + ébetheprobability of a vector not flipping.
For the present discussion, let us assume 7> }. (Thecase r <}
is considered in Sec. IV E.) We obtain

P, ,=rP, , ,+(1-11-P_, ).
For P , = 1, this gives
P, ,=4+1C2r—n"
[For uniform stretching, i.e., a =8 =y =86 =} we have

r=3 and P_ , is the same as N./(N, + N_).] Thus
P, converges exponentially to § as exp( — vn) with

v= —In(2r—-1).

In comment (vi) at the end of Sec. III, we noted that
chaotic flows in two dimensions do not produce dynamos.
From the point of view of this section, the lack of dynamo
action can be understood on the basis of the cancellation of
flux. This is illustrated in Fig. 8, which shows a closed field
line before [Fig. 8(a) ] and after [Fig. 8(b)] stretching by a
chaotic two-dimensional flow. The net flux crossing the ref-
erence dashed line has not increased. If, in such a two-di-
mensional situation, one examines the evolution of magnetic
energy (instead of the flux through an area), one would find
that it initially increases with time as a result of the exponen-
tial stretching of field lines. However, during this initial
phase in which the magnetic energy increases, the spatial
scale for variation of B decreases exponentially with time.
When the spatial scale of B reaches the scale £ at which
resistivity becomes important, the field energy rapidly de-
cays. To see how this occurs we note that the typical wave-
number « increases exponentially with time, x~exp(y,?),
with a corresponding diffusive damping time dependence
~exp( — f%*/R,, dt), where ['K*dt~y. "' exp(2y.t).
Thus the energy eventually damps very rapidly, roughly an
exponential of an  exponential, exp[ — (const)
X R ;! exp(27,t)]. (For an analytically worked out exam-
ple where this type of scenario occurs see Refs. 6 and 8.)

We now offer some discussion on the possibility of a
steady [i.e., v = v(x) with no ¢ dependence], fast dynamo
with a smooth' flow. Numerical approaches to the question
of whether such dynamos are possible are so far not conclu-
sive.”!> The easiest way to show the possibility of a fast dyna-
mo in a steady flow would be to find a steady chaotic flow
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(a) (b)

FIG. 8. (a) An initial closed magnetic field line. (b) The same field line
after stretching by a two-dimensional, chaotic flow. The flux through the
dashed line does not grow exponentially, because of cancellation.

with no cancellation. Arnold et al.® demonstrate a concrete
steady flow of this type (and with uniform stretching), but
their example is in a space of negative geodesic curvature;
thus it still remains unclear whether steady chaotic flows
without cancellation are possible for real situations (in par-
ticular, in a Euclidean space). Bayly'® assumes that such
flows exist and derives some properties of the resulting
steady fast dynamo. In particular, he shows that 4, is a low-
er bound on the growth rate (this also follows from the dis-
cussion in Sec. IV B). The existence of a fast dynamo, how-
ever, does not require the total absence of fine-scale
cancellation. This is clearly shown by our example in Figs. 6
and 7. [For the case of a two-dimensional flow, the cancella-
tion is so exact that there is no dynamo (see Fig. 8).] The
steady three-dimensional flow is, in a sense, intermediate
between the two-dimensional map case and the three-dimen-
sional map case: On the other hand, surfaces of section of
steady three-dimensional flows yield two-dimensional maps
(that is, pick a surface S and record the successive points on
S that intersect the orbit). On the other hand, the magnetic
field is not constrained to lie on the two-dimensional surface
of section S. The latter consideration may be the more cru-
cial. If it is, then exact cancellation (as occurs in the two-
dimensional case) would not occur. Thus one would con-
clude that typical three-dimensional chaotic steady flows
could yield fast dynamos and that these dynamos would ex-
hibit a concentration of flux on a fractal (due to nonuniform
stretching) as well as cancellation of flux on an arbitrarily
fine scale.

E. Real part of frequency

All of the maps we have studied so far have the property
of producing a field that is purely growing in time. Can the
real part of the frequency be nonzero? This is certainly sug-
gested by the fact that the operator in Eq. (1) is not self-
adjoint. The two-strip baker map of Eq. (9) and Fig. 4 can be
trivially modified to have a complex frequency by flipping
both sections; then ®, = ( — 2)"®,,. Also, the baker trans-
formation of Eq. (10) (Fig. 7) can be modified to give a
complex frequency. Take three sections, say, the «, 7, and §
sections, to be flipped. Then the flux satisfies @, ,
= —2®,0orP, = (—2)"d,, givingy = (In2)/Tand w,
= w/T. (For r, the probability of not flipping, less than 1,
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P , has oscillatory decay.) Still, this class of baker trans-
formations is special in the sense that the eigenfunction de-
pends on x alone, whereas a vector B at x = (x,y) is flipped
or not depending only on its value of y. For such maps it is
easy to show that w,, the real part of o, is either O or 7, i.e.,
®, ~d" with d a positive or negative real number.

To shed some light on the real part of w for more general
maps, we introduce another baker transformation,

Xyy1 =0X,
yn +1 = a lyn
xn+1 =a+ﬁ(§_xn)
yn+1 =B_1(1 _yn)
xn +1 =a + an
Yn+1 =ﬂ_l(y,, —a)
where S =1—a and O <, £ < 1; see Fig. 9. A vector at x
can be reversed in direction by this map depending on x and y
(ie., y>a, x < £), although the eigenfunction B(x) is of the
form B, (x)é,.

The special case of Eq. (18) with a@ = £ can be simply
analyzed because a part of the interval x =1, O<y<a is

mapped onto the cut y>a, x = &. If we define @, as the flux
in 0 <x < £ and P, as the flux in § <x < 1, we find (cf. Fig.

] if y, <a,
] if y,>a and x, <&, (18)

] if y,>a and x,>§&,

)]
<I>1> (<1>1)
=M , 19
(®2 n+1 ¢2 n ( )
where the matrix M is given by
(1 A cos(m/4) sin(1r/4)>
M= ( —1 l) o ‘/2( —sin(7/4) cos(w/4)] " (20)

This matrix has eigenvalues exp( + iw, T + yT), where
o, T=n/4, yT = (In 2)/2. In fact, the total flux ® =P,
+ &, equals 2”772 cos(nTm/4) for initial conditions P,
=a, ¢, =1—a [ie., uniform B,(x)]. Thus the flux
grows and oscillates with a period 87. The fraction of area
with positive flux can also be computed for £ = a. We find

P, . =3[1+27"T"2cos(nTr/4)],

showing that P, —1 decays exponentially at a rate
vT = Inv2 and also has period 87.

Another special value of £ for the map in Eq. (18) is
£=da*/[1—a(l —a)]. For concreteness, let « =4 and
& = 1. Let us define P, to be the flux for 0<x <}, P, the flux
for }<x <3, and ®, the flux for 3<x < 1. After fwo iterations
of the map, a portion of the segment x =4, J<y<1 is
mapped back upon the same cut. We find, as in Eq. (19),

P, D,
D, =M| D, |,
D3/ n 41 D,/
now with
1 1 0
M=| -1 0 1
0 1 1

This matrix has eigenvalues A = 0 and 4 = 1, the latter re-
peated. The former eigenvalue represents infinite exponen-
tial decay. The latter corresponds to one stationary mode
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FIG. 9. Schematic illustrating Eq. (18),
which is an example of a map yielding
oscillatory growth.
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and one mode that grows linearly rather than exponentially
with respect to time.

The map (18) appears to be difficult to analyze for &
other than £ = a or £ = a*/[1 — a(1 — a)]. More general
results have been obtained numerically and are shown in Sec.
V B. 1t is clear that the real part of @ in the example with
& = a is due to vector cancellation, the subject of Sec. IV D.

In the above we have found that ®, is commensurate
with the map period, (@, T)/(27) = }. We can also exhibit
examples where o, is incommensurate with the map period
[i.e., the time variation is quasiperiodic and (@, T)/(27) is
an irrational number]. The examples constructed are a class
of maps related to Eq. (18) for which Eq. (19) still holds but
with the matrix M being of the form

M= ( =i ), 21
where f, g, and 2 can be any integers. In this case
(@,T)/(27) can clearly be irrational [e.g., for A=f=1
and g =2 we have that (,T)/(27) = (arctan v2)/27,

yA ob— yA

which is an irrational number ]. The map yielding Eq. (21) is
obtained as follows. We follow the procedure illustrated in
Fig. 9 and take £ = « as before. We then take each of the
three strips in Fig. 9(b) and do further operations on them:
we uniformly and incompressibly stretch each in y (by an
amount f for the strip in @ > x> 0, by an amount g for the
strip in a+BE>x>a, and by h for the strip in
1>x>a + BE) and then place them back in the space they
originally occupied. This is illustrated in Fig. 10 for the strip
ina>x>0 ( f= 3 in the figure).

For the baker’s maps, Eqgs. (9) and (10), we have specif-
ic time-periodic, three-dimensional flow models (Figs. 3 and
6) that do not cut field lines and which correspond to the
map. This is not the case for the map (18) treated in this
section. Thus we cannot definitely conclude that results ob-
tained for the map (18) represent possible behavior for real
dynamos resulting from time-periodic flows. Nevertheless,
these results are suggestive. Concerning the possibility of a
real frequency (@, T)/2m = 1/P, where P is an integer, this

FIG. 10. Schematic illustrating the oper-
ation on the strip @ > x> 0 in Fig. 9(b) to
yield Eq. (21).

a a
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can definitely occur by a mechanism other than that for
(18). In particular, a three-dimensional map resulting from
a three-dimensional time-periodic flow can be ergodic on a
volume consisting of P disjoint subvolumes through which a
chaotic orbit cycles successively through each region every P
iterates. Thus if the initial magnetic field was nonzero in the
first of these components and zero on the other P — 1, on the
first iterate the region of nonzero field would move to the
second component, to the third on the next, to the fourth on
the next, etc., and back to the first on the Pth iterate. Thus
the field distribution can repeat every P iterates, yielding a
frequency (®,7)/2m = 1/P.

The tendency for the formation of fine scales (Sec.
IV C), the tendency for a high degree of flux cancellation
(Sec. IV D), and the possibility for real frequency (this sub-
section) pose inherent difficulties for numerical computa-
tions. A computational approach to calculating the zero re-
sistivity flux growth rate is discussed next.

V. NUMERICAL RESULTS

In this section we first describe a numerical method con-
structed to study the fast dynamo problem in the limit R,,
— o (Sec. V A). Our purpose is to use a code based on this
method to investigate aspects of the dynamo problem dis-
cussed in Secs. II-IV (growth rate, real part of frequency,
distribution of vector lengths, cancellation, and fractal
structure). The special maps of Sec. IV were constructed
explicitly in order to illustrate these features. We show re-
sults of our numerical procedure on these special maps in
Sec. V B in order to illustrate the method, and to show how
these features (specifically, distribution of vector lengths,
cancellations, and cascade to shorter scales) create inherent
difficulties. Then, in Sec. V C, we show the results of apply-
ing this method to more general maps. The results of Sec.
V Csuggest that the features encountered in the study of the
idealized baker’s map models of Sec. IV are to be expected in
dynamos for typical unsteady three-dimensional chaotic
flows.

A. Numerical method and qualitative features

Our numerical method takes advantage of the conjec-
ture of Sec. II1, namely, that the growth rate for R,, — « can
be found by computing the exponentiation rate of increase of
the flux through a fixed macroscopic area using the ideal R,,,

= oo equation, Eq. (2). Specifically, let us consider a map
x, .1 = F(x,) (for flows an analogous procedure applies),
and denote the magnetic field at a location x and a time n by
B(x,n) (in this section we set the time interval 7 between
applications of the map to unity, 7= 1). We then choose a
fixed surface S'in x space and pick K points on this surface x*
(k= 1,2,...,K), where x* can be chosen randomly with uni-
form distribution per unit area of .S or from a grid. The flux
through the surface S at time » is then approximately given
by

K

D, (n) gi S B(x*n)N(x*),
K=

where N(x*) is the unit vector normal to the surface S at the

point x = x*and 4 is the area of S. The problem then reduces
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to finding B at time  at the points x* given an initial smooth
magnetic field B(x,0). The calculation proceeds in two
steps.

Step 1: We first determine for each x* the corresponding
initial value of x which when iterated forward » times under
the map lands at the point x*. We denote this initial value
x*(n), and we obtain it by starting at x* and iterating the
map backward in time,

x*(n) =F~*(x").
Note that
x¥(n+ 1) =F'[x*(m)],

so that, to find the initial conditions for calculating @5 (n) at
successive later times, we can take the initial conditions for
each x* for the previous time and iterate them backward
once.

Step 2: At each x*(n) we evaluate B*(n) = B[x*(n),0]
and iterate the magnetic field forward in time using the lin-
earized map [the analog of Eq. (4)],

B(x*n) = B*(n){VF[x*(n) | }{VF[x*(n — 1) ]}
- {VF[x*(]},

where VF[x*(m)] denotes the Jacobian matrix of partial
derivatives of F(x) evaluated at the position x = x*(m). For
the vectors x*(m) we use those already obtained numerical-
ly from the backward iteration in step 1 [and not orbits nu-
merically calculated from forward iteration of x*(n)]. This
ensures that the points x*(0) lie on S with the initial distribu-
tion—either random or on a grid. This maneuver is neces-
sary because machine roundoff is exacerbated by the expo-
nential divergence of trajectories. (When applying the
numerical technique to the two-dimensional baker’s maps of
Sec. IV, S'is to be understood as a line segment, rather than a
surface.)

For large n and chaotic orbits, the direction of B at time
n and point x is typically primarily determined by the last
few Jacobian matrix multiplications near time n. (This is
because these preferentially amplify the vector component in
the most unstable direction.) Thus the direction of B typical-
ly has a short range memory dependence on the orbit. Hence
it does not “have time” to develop arbitrarily fine-scaled
features. That is, the direction of B varies smoothly (see
Greene?’ for a related discussion). In contrast, the sign and
value of the field along this unstable direction clearly depend
on the whole orbit and hence can become fine scaled. (An-
other way of phrasing this is to say that the magnitude and
sign of B can vary on these decreasing length scales but B
cannot rotate on such length scales.) Thus as » increases, for
most of the positions x*, B becomes of the form

B(x,n) =u(x,n)w(x),

where w(x) is smooth and #(x,n) develops finer and finer
scale dependence on x as n increases. Thus it is the variation
of the scalar quantity #(x,n) that is responsible for the ten-
dency of flux to concentrate on a fractal and the tendency for
cancellation. For the baker’s models considered in Sec. IV,
w(x) was a constant, namely, y,. The point here is that this
is not much of a limitation. In particular, if we examine
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B(x*n) in some tiny enough region at large #, then w(x*)
will be approximately constant in this region, while u is fine
scaled; and the behavior, in this regard, is similar to that in
the baker’s models.?®

Before presenting results produced by the numerical
technique described above, we discuss the impact of some of
the phenomena discussed in Sec. IV on the implementation
of this (or any other) numerical method. In particular, we
are concerned with the differential rate of stretching and the
tendency for cancellation.

For the simple baker map of Eq. (9) and Fig. 4, in which
there is no cancellation, we found that the fraction of the
area contributing after » iterations to, say, 90% of the total
flux through S scales as (2yaB )", where 8= 1 — a. Thus
for large n only a small number, k,,, of the K vectors on the
surface S will be responsible for most of the flux, where

k, =Q"K, (22)

with @ = (2J/aB ). Note that Q<1 for a#B8=1—a. To
have a reliable computation of the mean vector length, &,

must be large. For a = f =14, Q is unity, and all vectors
contribute to the sum. (This is the trivial case in which all
vectors have the same length.) Notice that Eq. (22) indi-
cates that (except when @ = 8 =) k, decreases exponen-

tially with # and will therefore eventually become too small
for reliable computation of the flux. Also note that this prob-
lem is more severe for smaller a, i.e., for wider distribution of
vector stretching amplitudes. For example, taking K = 10%,
and assuming we require k, 2 10 for good statistics, we see
that the results will be reliable for #5100 for o = 0.4
(Q =098 and ratio of maximum to minimum stretch
B/a = 1.5),but n s 10is required for o = 0.2 (@ = 0.8 and
B /a = 4). As we have discussed in Sec. IV, we expect gen-

eral maps (and flows) to have nonuniform stretching.

Generally, we are limited in X by computer time. [Stor-
age is not an issue because the different orbits x*(n) are
independent of each other. This is a major advantage of our
numerical scheme compared, say, to a Eulerian integration
of (1).] This generally means that for reasonable distribu-
tion of stretch (corresponding to B /a<3), accurate expo-
nentiation rates of magnetic flux can be computed. How-
ever, for a very wide distribution, it may not be possible to
produce even several e-foldings before accuracy is lost.

The second issue, cancellation, is illustrated by the four-
slice a, B, 7, 6 baker transformation of Eq. (10) and Fig. 7. It
is convenient for discussion to pick @ = =y = § =} ini-
tially, so that no differential stretching effects enter. An im-
portant measure of the effect of cancellation on the numeri-
cal method is the quantity P , determined in Sec. IV D,
which is equal to the probability of a point x* having positive
field, B ;‘ >0, at step # (assuming uniform upward field at
time n = 0). Let f, be the actual fraction of the K pointson §
that have positive field at step #. In a numerical computation
with K orbits the computation of the flux ®¢ will be accurate
as long as |P, , — }|» 1/K"2. After that point, statistical
fluctuations of £, with amplitude 1/YK, cause the effect of
cancellations on the growth rate to be computed inaccurate-
ly. The above discussion can easily be generalized to the situ-
ation in which differential stretching occurs. In this case, the
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same arguments apply but with X replaced by &, . Thus the
condition for accurate computation of the fluxis [P, , — 4|

> 1/JE, ~0 ~"*/JK.

B. Results: Baker transformations

In this subsection we present and discuss the results of
applying our numerical scheme to the various baker trans-
formations introduced in Sec. IV. Our purpose is to illustrate
further the effects of distribution of stretching and cancella-
tion and to aid in interpreting the results of applying the
numerical method to more general maps.

In Fig. 11 we show results for the flux for the first baker
map, of Eq. (9) and Fig. 4, i.e., without flipping, with
a = 0.3, and K = 5000. The Lyapunov exponent, averaged
over all the particles, equals 0.611, for nR 4, in agreement
with Eq. (11) which gives 4, =0.6109. (Again, T=1.)
The standard deviation of the distribution of Lyapunov ex-
ponent behaves as 1/y/n, as expected. The exponentiation
rate of the flux is computed to be 0.68 for n X 100, in agree-
ment with I' =4, =1n 2 = 0.693... . This computation is
not accurate for n > 100. For a = 0.3, we obtain k, = 64 for
n=>50and k, =7 for n = 75, so the deterioration in I" for
n 2 100 is expected.

In Fig. 12 we show numerical results on the four-strip
baker transformation with flipping in the third () section,
i.e., the map of Eq. (10) and Fig. 7. We pick @ ={ and
B =y =0=§so that there will be differential stretching
(a/B = }) as well as cancellation. The Lyapunov exponent
averaged over all orbits for nR 5 is computed to be 4,

= 1.37, which agrees well with Eq. (12), which gives 4,
=aIn(1l/a) + 38In(1/8) = 1.369. Also, the distribution
function of Lyapunov exponents has a standard deviation

that decreases as 1/y/n, as expected. Figure 12(a) shows the
flux without cancellation

$ = [IBNlds=2 S [BAN

P, L|B N|dS~Kk§1'B N“| (23)
as a function of n. In Eq. (23) 4 is the length of the line S'in
the two-dimensional case and the area of the surface Sin the
three-dimensional case. The exponentiation rate of this
quantity is expected to be equal to the topological entropy.
Numerically, we find for this rate 1.39, which is in excellent

L 1 1 1 i 1 1 )

0 40 80 120 160 200

FIG. 11. Flux as a function of iteration number for the two-strip baker’s
map [Eq. (9)] witha =0.3.
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FIG. 12. Results for the four-strip baker’s map Eq. (10): (a) <T>,, , the flux
without cancellation, Eq. (23); (b) the flux ®,; and (¢) £, —}.

agreement with its expected value of A, =1In 4 = 1.386... .
The number of orbits used was K = 10°. Also, the distribu-
tion of stretching was modest (4, /A, = 1.01), so that the
arguments of the previous section indicate that the topologi-
cal entropy should be computed accurately even for much
larger n. In fact, using the results of Appendix C (a = § and
B = % yield @ = 0.9837), we find that for K = 10°the topo-
logical entropy computation (i.e., the computation of the
exponential rate of increase of <T>,,) should be accurate for
7S 300 (to obtain this we required k, ~KQ"> 10%). Figure
12(b) shows the total flux ®, as a function of n, and Fig.
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12(c) shows f, — }, where f, is the fraction of points x* with
B}>0. For n210, we obtain an exponentiation rate
" = 0.67, in reasonable agreement with the expected value
In 2 =0.693.... For n= 10, the exponentiation rate is not
very constant but is of order A, = In 4. Also, f,, — 1 has ex-
ponentiation decay rate v = 0.61 for n % 10. From Sec. IV D,
the expected value is v= —In(2r—1), with r=}, or
v=0.588.... For n* 10, f, —} exhibits statistical fluctu-
ations with level consistent with 1/JK ~1/,[k, ~3X1072,
Notice that the point at which the exponential decay of f,
—} ceases to mask the statistical fluctuations (n~10)
agrees well with the point where the flux begins to exponen-
tiate at a rate closer to the topological entropy.

In Sec. IV E we introduced the map (18) (Fig. 9) to
illustrate the possibility of a real part of the frequency. The
case @ = £ = }, with K = 10° particles, is shown in Fig. 13.
From the results of Fig. 13(a) we compute the growth rate
tobe I' = 0.346, which is in good agreement with the expect-
ed value In V2 = 0.346... . Also, the period 8 (w, = 7/4) is
evident. The cancellation factor f, —} is shown in Fig.
13(b). The damping rate is computed to be v = 0.34, also in

n
(a)

tel

i)
4 6 8 10 12 14

(o]
N

n
(b)
FIG. 13. Results for the map Eq. (18) with & = £ =1: (a) the flux |®,],
and (b) | f, — i|. The + signs again indicate the sign of ¢, and £, — }.
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agreement with In v2 = 0.346..., as discussed in Sec. IVE.
Again, period 8 is evident. This case is particularly tractable
numerically because all vectors stretch by the same factor,
namely, 2. Therefore the Lyapunov exponent and the topo-
logical entropy both equal In 2. The effect of cancellation is
to reduce the growth rate and provide w,. Also, the flux ¢,
and the cancellation factor f, — 4 are accurate as long as
fu —3>1/YK =3X 1072 or n 512 as expected.

In Fig. 14 we show results for the same map [Eq. (18)]
but with @ = 0.5, £ = 0.4. The number of orbits used was
K = 10°. Since @ = B =1, Q=2\/af equals unity and k,,

= K. The flux ¢, and the fraction f, — } are shown in Figs.
14(a) and 14(b), respectively, showing growth and oscilla-
tion. We measure w, =0.37 (period = 17) and y=0.24. The
topological entropy A, and the Lyapunov exponent 4, are
measured to be 0.693. This value is in agreement with the
theoretical value In 2 for both (equal because @ = §). The
decay rate of f, — } is v = 0.45, also with period 17. Note
that v + y=~A . This result is to be expected because of the
uniform rate of stretching, i.e., @ = 3. As before, the results
are expected not to be degraded by cancellation as long as

| £, — 3| >1/k, = 3X 1073 thatis, for n S 12. The behav-

lol T T T T T T T
1of 1
| @l
|
o[
+
| F
1 1 1
0O 2 4 6 8 1012 14
n
(a)
I t 1 T ) ¥ T T
Iél-
f"'yzl i
107
-4
lo 1 1 i

Lo X
0 2 4 6 8 1012 14

FIG. 14. Results for the map Eq. (18) with @ = 0.5 and £ = 0.4: (a) the
flux |®,|, and (b) | f, — i]. The signs again indicate the sign of ®, and

fo b
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ior of @, and of f, — } is indeed observed to deviate from
(complex) exponential behavior beyond this point.

C. Results: ABC maps

In this section we present the results of applying our
numerical scheme to a class of continuous three-dimensional
maps. It is to be expected that the properties of these maps
are typical of what happens in unsteady, three-dimensional
chaotic flows; in contrast, one may question this for the maps
of Sec. IV, which were artificially constructed to exhibit cer-
tain properties of the dynamo process. In particular, the
stretch—twist-fold process, on which Sec. IV is based, im-
plies that v(x,#) is not continuous in x. To see this, we note
that there are points on the surface of the figure-eight shaped
tube in Fig. 2(c) that are separated before the fold but coin-
cide after the fold [Fig. 2(d)]. In this section we consider
cases with spatially continuous velocity. The class of maps
we consider is related to certain divergence-free flows having
the property dv, /dx = dv,/dy = dv,/dz = 0.

A numerical scheme for integrating the streamlines of
such flows [i.e., Eq. (3)] is

xn+1 =xn + Tvx (yn’zn)’

yn+1 =yn+Tvy(xn+l’zn)s (24)

Zn+1 =zn + Tuz(xn+l9yn+1)’

where T is a constant. This numerical scheme is stable for
arbitrary 7 because of its semi-implicit nature. In particular,
the determinant of the Jacobian matrix of
(X, 4 1Vn 41204 1 ) Withrespect to (x,,y,,2, ) is exactly uni-
ty, i.e., the map (24) is exactly volume preserving. We will
generally deal with these maps with relatively large values of
7. This allows much faster computations. Another major
reason for this is that for small T [i.e., when (24) approxi-
mates well steady flows given by the solution of the differen-
tial equation, dx/dt = v(X) =X,0,(1,2) + ¥ov, (x,2)
+ z,v, (x,p) the chaotic region of space may be quite small.
For example, the region of chaotic streamlines for the steady
flows called ABC flows,?*!

v, =Asinz+ Ccosy,

v, = Bsinx + 4 cos z, (25)

v, =Csiny+ Bcosx,

is a rather small fraction of the cube of periodicity®' (having
sides of length 27). On the other hand, we find that for
A~B~C~T~1, the map (24) based upon the ABC flow
has a chaotic region that extends throughout almost ali
space. (This is related to the two-dimensional case in which
the “leapfrog” scheme for the pendulum dg/dt=p,
dp/dt= —sing, ie, ¢,,1=¢,+Tp,, Poy1=Pn
— Tsing,, ,, is the Taylor-Chirikov standard map. The
pendulum is of course integrable, but the standard map has
large chaotic regions for T2 1.) Also, we note that the map
(24) results exactly for a time-periodic flow with velocity
given by
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-+ o0
v(x,t) =0, (12X D> 6(t—nT)

n= - o

+ o
+0,(x2)y0 > 8(t—nT—e¢€)

n= —ow

+
+0,(x)20 Y 8(t—nT—2€)

(where € denotes a small positive quantity), after integrating
dx/dt = v through the delta functions at ¢t = nT, nT + ¢,
nT 4 2e. More generally, time-periodic flows (including
those which are continuous in time) result in three-dimen-
sional volume preserving maps when snapshots are taken at
t = nT, and Eqs. (24) and (25) should yield features that
are typical of these.

In Fig. 15 we show the results of applying our numerical
method to the ABC map*? (24), (25),withd=B=C=1,
and T = 1.5, with K = 2.5 X 10 orbits. The Lyapunov expo-
nent is computed to be 0.75, and from Fig. 15(a) (i.e., from
the flux without cancellation), the topological entropy is
equal to 0.97. In Fig. 15(b) we see evidence of oscillation in
&, for n 5 10. These results are consistent with the possibil-
ity of two unstable modes, one with ¥y =0.70 and @, =0,
and another with ¥ about 109% lower but with @, ~ 1.2 (peri-
od =5). The fraction f, — ] displayed in Fig. 15(c) shows a
decay rate v~0.30 and a period of about 5. This is consistent
with the picture of two unstable modes: the faster growing
mode dominates in flux (for n 2 10) but does not dominate
the slower growing mode in f, — } because the length scales
of the latter evidently do not decrease as rapidly. That is, the
flux of the faster growing mode concentrates onto a smaller
area as it grows, but f, — } is not influenced because it is
unrelated to the distribution of vector lengths. For
K = 2.5 10° we estimate k, tobe 10°atn = 15, sothat the

statistical level 1/,/k, is 31072, The fact that | f, — | is
greater than this quantity over the whole range indicates that
the results are accurate over that range. In fact, the results
shown in Fig. 15 agree with those of another run with fewer

orbits whenever the inequality | f, — }| > 1/y/k,, is satisfied
for the latter run.

In Fig. 16 we show the results of another case with the
ABC map of Eqs. (24) and (25), with 4 =1,; B=3,
C= \/}_, as in Refs. 12 and 31, and with 7= 3 and X = 10°.
The Lyapunov exponent is A = 1.49 and the topological en-
tropy, from Fig. 16(a), is A = 1.83. The flux, from Fig.
16(b), has growth rate ¥ = 0.9 (with no observable value of
o,) for n & 8. Thereafter, the flux grows irregularly, but with
an average growth rate near the topological entropy. The
fraction of orbits with B, >0, f, — 1 is shown in Fig. 16(c).
Its decay rate v is 0.8. The results of this case are qualitative-
ly very similar to those of the four-strip baker map with
cancellation shown in Fig. 12.

The fractal nature of the magnetic field produced is
shown clearly in Fig. 17. The parameters are those of Fig. 15
and the surface Sis 0.8<(x,y)<1.2 and z = 1. We have plot-
ted only those points on a 100X 100 grid whose field contrib-
utes to 90% of the total flux without cancellation ®,. That
is, starting with the vectors with the largest value of | B, |, we
mark their position on the surface S and continue until the
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FIG. 15. Results for the ABC map with 4 =B=C=1and T= 1.5: (a)
P, (b) ®,,and (c) £, — 1.

sum of |B, |4 /K, where A is the area of S, equals 0.9 of the
value obtained for the sum of | B, |4 /K for all 10 000 points
in the grid. The points with positive B, and with negative B,
are plotted as plus and minus signs, respectively. The general
structure set up at # = 3, has little variation along lines hav-
ing 8y/6x ~ 1.4, the direction associated with the maximum
Lyapunov exponent, projected on the plane z = 1. The maxi-
mum variation is along lines having §y/6x~ —0.7. As n
increases, two phenomena occur. First, successive strips
elongated in the maximum . Lyapunov direction are re-
moved, much in the manner that the familiar Cantor set is
formed. Second, some strips with B, <0 are placed in areas
previously having B, >0 and vice versa. The tendency for
fine-scale structure to form with increasing n is clearly evi-
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FIG. 16. Results for the ABCmap with A = 1, B= [}, C= [T, and T=3:

(a) ®,, (b) ®,,and (¢) | £, —4-

dent. Also, the fraction of vectors in the grid that contribute
to 90% of the flux without cancellation is seen to decrease
with n. Hence the field becomes more and more spatially
intermittent, again indicating the tendency for the flux to
concentrate on a fractal.
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FIG. 17. Location of points in a 100X 100 grid whose field contributes to
90% of ®,, at (a) n=3, (b) =5, (¢) n="7, and (d) n = 9. Points with
B, >0 are plotted as a plus sign, and points with B, <0 are plotted as a
minus sign. Parameters are those for Fig. 15 and the surface examined is
located at z = 1 and 0.8<(x,y)<1.2.
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VI. CONCLUSIONS

Using simple idealized models it has been argued that
fast kinematic dynamos can occur for typical unsteady,
three-dimensional, chaotic flows, and that, in the R,, — oo
limit, they typically have the following properties.

(a) The magnetic flux concentrates on a fractal set, i.e.,
exhibits spatial intermittency, because of the distribution of
vector stretching. Another effect of the distribution of vector
lengths, which is expected in general to be approximately
lognormal, is that the growth rate can be larger than the
Lyapunov exponent. The growth rate is in general limited by
the topological entropy.

(b) The magnetic field vector rapidly oscillates between
parallel and antiparallel directions. This rapid oscillation
leads to a flux cancellation that is exponential with respect to
time, and which can lead to a reduction in growth rate rela-
tive to the topological entropy. [ As shown in Ref. 16, this
reduction can lead to negative growth rate (damping).]
Without cancellation the growth rate equals the topological
entropy.

(c) Oscillatory unstable modes may occur.

The simple models we have employed illustrate quanti-
tatively the relationship between the stretching and cancella-
tion on the one hand, and the dynamo properties (i.e., the
fractal nature of the magnetic field and its dimension, the
growth rate, and the real part of @) on the other. Further-
more, using a numerical technique for investigating the
R,, — o limit, these results have been shown to hold for a
more representative example, the ABC map.*
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APPENDIX A: LACKOF DYNAMO ACTIVITY INACLASS
OF THREE-DIMENSIONAL CHAOTIC FLOWS

Our purpose in this appendix is to exhibit a class of
flows, with v, a constant, that do not exhibit dynamo activity
in spite of having chaotic orbits. We also discuss some prop-
erties of such flows. Specifically, we discuss how the zero
dynamo growth rate of such flows is due to perfect cancella-
tion of the form described in Sec. IV D, and yields flow-
aligned fields B = av.

In this appendix we consider flows of the form

v = Vo (x,,2) XZo + VUpZo. (AD)
In comment (vi) at the end of Sec. III we showed that this
flow can be chaotic. We now show that it cannot produce a
dynamo. This proof, which is a generalization of the Cowl-
ing theorem,® is based upon a discussion with Strauss. The z
component of Eq. (1) gives

dB, JB, . _ o

TR + vVB, —RmV B,.
Thus B, approaches a constant B, as f— « . For appropriate
boundary conditions B, is the average of the initial value B,.
For large R,, and chaotic flow this occurs on a time scale

(A2)
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much faster than R,, because the convection term mixes B,
into long thin sheets. Then the diffusion term diffuses B,
across these sheets, as soon as the scale length approaches
R /2. For B, uniform, the magnetic field can also be writ-
tenintheform (Al), B=Vy(x,y,z) Xz, + Byz,. The zcom-
ponent of Ohm’s law

‘3—? =vXB —Vu + R, ?V3A,

with A = ¢zo + Byr0o/2, is

%.'.vl-v,p: __Ql_‘_+___1___vz¢

A3
ar o " R, (Ad2)
or
dy _a 1,
it AP — —V24y). A3lb
a " TR VY (430)
The other components of Ohm’s law produce

(V, =V —12,0/92)
V. (e + Bop —vo9p) =0

or i = vy — Byp + g(2). But g(z) can be removed by a
gauge transformation (changing only ¥ = 4, ). Using this
and d¢/dt = v, d¢/ Iz, we obtain from Eq. (A3)

d¢’ 1 ooz _ Bo 2

dt R, v R Ve
where ¢ = vy — Byg. This is a linear equation for ¥ in
which the term f(x) = (By/R,, ) V>4 acts as a source. With
appropriate boundary conditions, the homogeneous solu-
tion ¢, decays to a constant, as for Eq. (A2). Thus with the
source present, the solution ¢ is of the form
Y=, (x,2) +t (f) + ¢,(x), where (f) is the volume
average of fand ¢, satisfies vV, — R  'V29, =f— ( f).
The mean value of the left side of the equation for #, can be
guaranteed to be zero by the boundary conditions. The ¢ { f)
term does not contribute to B, = Vi Xz, Thus B, relaxes
to a steady spatially varying field with magnitude propor-
tional to By, the initial spatially averaged B, . Hence there is
no dynamo (amplification of initial field).

For large R,, the V?¢ term in Eq. (A4) is negligible
because ¢ does not have the short scale lengths that i devel-
ops due to convection. Thus # convects as a passive scalar
and, for chaotic flows, becomes a constant, ¥ = B¢/
Up 4+ (const). This implies that for large R,,, the full magnet-
ic field relaxes to the state

(A4)

m

B =av, (AS)

where a = By/v, is a constant. Such flow-aligned fields
clearly satisfy dB/dt = VX (vXB) =0. Again B~B, so
there is no dynamo. As discussed in Sec. IV D, the growth
rate is zero because of cancellation of flux.

The condition (A5) can be obtained independently by
requiring steady state E = — V& = — vXB. The equation

o =0 (A6)
implies that ® is a constant on the region covered by the

chaotic orbit. From this it follows that the magnetic field is
flow aligned, B = a(x)v. From V:B = Vv = 0 we find
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(A7)

implying that a also is a constant on the region covered by
the ergodic orbit. Both the potential ¢ and «a are constants
because no streamfunction 4 (with vV4 = 0) exists. For an
integrable flow of this class, i.e., with d¢/dz =0 and for
E = 0, we obtain in steady state

B=a(d)v, (A8)

representing the tendency for B to line up with the stream-
lines because of differential flow. No fast dynamo is possible
for such flows because there is no positive Lyapunov expo-
nent.

vWa =0,

APPENDIX B: FURTHER DISCUSSION OF FRACTAL
DIMENSION FOR THE MAP GIVEN BY EQ. (9)

To discuss concepts of fractal dimension further, let
®, (a,b) be the upward flux through an interval a<x<b at
time aT. Since the total flux doubles on every iterate
[®,(0,1) =2"®y(0,1) ], we normalize ®, as follows:

W, (a,b) = ®,(a,b)/[2"D,(0,1)].

Assuming the y component of the magnetic field at n =0 is
positive everywhere, we have for Eq. (9) that g, (0,x) is a
positive nondecreasing function of x. Letting 7 — 0, we de-
fine a measure p(a,b) as

pu(ab) = lim y,(a,b).

now we divide the x interval (0,1) into N bins of size € = 1/
N, and examine the time asymptotic normalized flux in each
bin,

P =u((k—1eke), k=1.2,...

There are different notions of dimensions.?*?¢ Here we con-
sider the spectrum D, of dimensions of the measure y,
where?®

InI’
Dq=lim—l— n .,(e)’.
e~0g—1 e
N=1/e (B1)
IL= % pi.
k=1

For each g value there is a dimension D, . As an example, if
the flux distribution were uniform in x, then
plab)=b—a,p, =€ 1, =€¢"", and we obtain D, = 1
for all q. As another example, if the flux is all located at a
single point (the magnetic field is a delta function in x),
then, for some k = ko, p,, = 1, and p, = 0 for all other k;
hence I, = 1and D, = 0.

To calculate D, for the map (9), we note the following
important similarity property: if we imagine that we have a
flux p, in each cell and apply the map to that flux and divide
the result by 2, then we obtain & cells of width a€ in 0<x<a
and N cells of width fe in a<x< 1, with the & and Bintervals
each having within it a replica of z(0,x) on the whole inter-
val (cf. Refs. 24 and 26 for similar reasoning). Thus to calcu-
late D, we write I, as

IL(e)=15(e) +15(e),

where 77 (¢€) is the sum of the pf over all the cells lying in
0<x<a and I(¢) is the sum over cells lying in a<x<1.
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From the similarity property we have
N=1/ef | q 1\¢
w0 = 3 (3] = () e
I5(e) = (17291, (¢/a),
and similarly for 7%. Thus
I(e) =27, (e/a) + 27, (e/B). (B2)
As suggested by the definition (Bl )4, we take

I,(e)~ €9 P Equation (B2) then yields a transcenden-
tal equation for D,,

2q=a—(q~l)Dq+B —(q—-l)Dq.

(B3)

Among the various definitions of the dimensions of a
measure, a special role* is played by the information dimen-
sion, which can be obtained from the limit ¢— 1 of D,

Dl = lim Dq.

q—1

Taking this limit in Eq. (B3) we have

D, = (In2)/[In(1//aB)]; (B4)

thus the information dimension of the measure u, Eq. (B4),
is the same as the capacity dimension of the smallest set
containing a fraction 6 < 1 of the flux, Eq. (17). For a discus-
sion of why this is so see Ref. 24.

The reader familiar with the subject of strange attrac-
tors in dissipative dynamics will recognize that the consider-
ations here are very similar to those for strange attractors. It
might seem strange that this is so, since the dynamics here is
area preserving and the measure generated by typical orbits
is uniform in the square, 0 < (x,y) < 1. Note, however, that
here it is the flux that is being attracted to the fractal set (the
“strange attractor”) rather than the typical orbits, and the
measure considered here is the normalized flux.

APPENDIX C: A MORE GENERAL TWO-STRIP MODEL

Here we treat a case that generalizes the result, Eq.
(22), which we obtained for the two-strip map Eq. (9). We
imagine that the map creates two strips, one of width p and
one of width ¢ (p + g = 1), and that the stretching of the p
stripis 1/a and the stretching of the g strip is 1/8. In the case
of Eq. (9), p = a and ¢ = B. Another case is where we con-
sider the process in Fig. 7 (without the rotation of the third
strip) with 8 = ¥ = §#a. In this case, since the 8, ¥, and &
strips are adjacent and have the same stretching, we consider
them as a single merged strip. Thus we have for the p strip
(0<x <a),p = a,and, for the (merged) gstrip (¢ <x < 1),
g = 3B. In what follows we do not assume any relationship
between the p,g and the a,8. The width of a strip after n
iterates is p" ~ "g™, m = 0,1,...,n. The flux in such a strip is
(p/a)"~"(q/B)™; and (as in Sec. IV C) the number of
strips with given » and m is Z(#n,m) the binomial coefficient.
The total flux in all strips with given » and m is

(%) ) (%) Z(n,m) = [(‘E’) + (%‘)] Pe” "qeZ(n,m),

(cn
where p, = (p/a)/[(p/a) + (¢/B)], and q, = (¢/B)/
[(p/@) + (¢/B)]. (Note that p, + ¢, = 1.) As a function
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of m, the quantity p}~ "qsZ(n,m) is strongly peaked
around m = nq,,, with a width in m of order yn. Thus the

total width of strips containing most of the flux is of the order
of

Jnp"~"q"Z(n,m),
evaluated at m = nq,, . Using Stirling’s approximation

P g Z(n,m) = (27np,q, ) " ""?

Xexp[ — (m —nq, Y*/2np,q, ],

this gives for the total width of such strips a constant times
Q", where Q <1 (for a# ) and is given by

Q= (p/p,)*(a/q,)™.
Thus, of the K strips on the surface S, only k, ~KQ " of them
will be responsible for most of the numerically computed
flux.

For the numerical example on the four-strip baker’s
map [Eq. (10)] treated in Sec. V B, the strip widths are

=} and f=y =46 =} In this case we have p= { and

g =%, which yield p, =} and ¢, =3 Thus, 0 = 0.9837,
which is very close to unity. The numerical experiment on
thismap (Fig. 12) runsfor n = 20iterates. Since @ ?° = 0.72,
we see that kK, ~K at this time, and therefore the noncancel-
ing flux d> and the topological entropy should indeed be
computed accurately.

The Lyapunov exponent for this general class of maps is

AL =pIn(1l/a) + qIn(1/8). (C2)
From Egq. (6) the growth rate of the flux, or the topological
entropy, is

Ar=In{p/a + q/B).

Again, it is seen that A >A,; with equality holding only for
a=p.
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