J. Fluid Mech. (1993), vol. 257, pp. 265-288 265
Copyright © 1993 Cambridge University Press

Growth rates for fast kinematic dynamo
instabilities of chaotic fluid flowsT

By YUNSON DU AND EDWARD OTT}

Laboratory for Plasma Research and Department of Physics, University of Maryland,
College Park, MD 20742-3511, USA

(Received 29 October 1992 and in revised form 11 May 1993)

It is shown that the exponential growth rate of the fast kinematic dynamo instability
can be related to the Lagrangian stretching properties of the underlying chaotic flow.
In particular, a formula is obtained relating the growth rate to the finite time Lyapunov
numbers of the flow and the cancellation exponent «. (The latter quantity characterizes
the extremely singular nature of the magnetic field with respect to fine-scale spatial
oscillation in orientation.) The growth rate formula is illustrated and tested on two
examples: an analytically soluble model, and a numerically solved spatially smooth
temporally periodic flow.

1. Introduction

This paper considers the fast kinematic dynamo problem. The limit of the instability
growth rate as the electrical resistivity approaches zero is shown to be given by a simple
general formula involving the finite-time Lyapunov numbers of the underlying chaotic
flow.

The kinematic magnetic dynamo problem can be stated as follows: Will a smalil seed
magnetic field in an unmagnetized electrically conducting fluid be amplified
exponentially in time by the flow? Combining Ampere’s law, Faraday’s law, and
Ohm’s law for the flowing incompressible fluid, this linear instability problem leads to
the following equation for the magnetic field B:

0B _ 1 oo
S +vVB=B-Vot+-—VB, 1)

m

where R, is the magnetic Reynolds number (i.e. the normalized electrical conductivity
of the fluid), and the velocity v is presumed given and incompressible, V-v = 0. The
dynamo is said to be ‘fast’ if exponential growth persists in the limit of infinitely large
R,, (Zel’dovich & Ruzmaikin 1980). That is, v, > 0, where

'm0

and y(R,,) is the growth rate of the fastest growing mode at magnetic Reynolds number
R,,. Fast dynamos are thought to be relevant to explaining the presence of magnetic
fields in astrophysical objects, since these objects typically have very large magnetic
Reynolds number (e.g. R,, > 10® on the surface of the Sun).

T With an Appendix by B. J. Bayly and A. Rado.
i And Department of Electrical Engineering.
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It has been argued that fast dynamo action in a flow is connected with the nonlinear
dynamics of the Lagrangian trajectory equation for points in the fluid,

%’7‘ = o(x, ). 3)

In particular, fast dynamo action of a smooth flow is expected (Arnol’d et al. 1981;
Bayly 1986; Bayly & Childress 1988 ; Finn & Ott 1988; Finn et al. 1991; Galloway &
Frisch 1986; Vishik 1989) only if this equation has chaotic solutions in the sense that,
in a positive volume of space, there is exponential divergence of infinitesimaily
displaced initial conditions. We call this situation Lagrangian chaos. Finn & Ott (1990)
conjectured that the limiting growth rate y, given by (2) is the same as the exponential
rate of flux growth through typical surfaces calculated from the ‘ideal’ (i.e. infinite
conductivity) version of (1),

%+v-VB=B-Vv, @

which results from the omission of the term V?B/R,. This is a considerable
simplification because (4) can be written as an ordinary differential equation,

dB
e B-Vv, Sa)

following the Lagrangian trajectory x(#) of a fluid particle. Alternatively (5a) can be
written as

dB
—~_ _#B

=B (50)
where the 3 x 3 matrix . is given by .# = (Vv)*, where + denotes the transpose.
Consideration of two orbits of (3) initially displaced by an infinitesimal dx(0) leads to
an equation for the time evolution of the displacement dx,

d(%x = ox-Vv = .4 ox, (6)

which is the same as (5) with B replaced by dx. Thus, in the infinite-conductivity case,
B and éx evolve in the same way. Note that the replacement of (1) by (4) is not trivial,
since, as R,, becomes large, B varies more and more rapidly in space, and V2B/R,, is
thus not necessarily small; this is why the prescription of Finn & Ott (1990) remains
a conjecture. In this paper we attempt to calculate the limiting growth rate v, purely
from general stretching properties of the Lagrangian chaotic flow v(x, t). Thus, as in
the conjecture of Finn & Ott (1990), the result is in terms of quantities calculable solely
from the dissipationless equation for B, (5) (equivalently, (6)). We obtain a formula
((23) of §3) giving y, in terms of the finite-time Lyapunov numbers of the flow and the
cancellation exponent «. (The latter quantity characterizes the extreme tendency of
high-R,, dynamo magnetic fields to oscillate in sign on a very fine spatial scale (Du &
Ott 1993; Ott et al. 1992).) Related results are those of Aurell & Gilbert (1992), who
calculate y, in terms of unstable periodic orbits in the flow, and of Finn & Ott (1990),
who argue that the logarithm of the average rate of stretching (where the average is
done appropriately) is an upper bound for vy,. In fact, our result in the present paper
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reduces to the upper bound of Finn & Ott (1990) in the absence of cancellation effects
(x = 0), and is smaller than the upper bound when cancellation is present (x > 0).

The formula we obtain for vy, is interesting in that it provides a connection to the
ergodic stretching properties of the flow. In addition, however, the numerical results of
§5 also show that it offers a potential computational advantage. In particular, the
growth rate formula appears to be much easier to compute numerically and to
converge quicker than a straightforward computation of the flux growth through a
surface (Finn & Ott 1990).

In this paper we take the underlying unperturbed flow v(x, 7) to be such as to yield
Lagrangian chaos, meaning that (6) has an exponentially growing solution for typical
fluid trajectories x(¢) in a volume of space. The actual time dependence of » can be
steady (v = v(x)), periodic (v(x,?) = v(x,t+T) where T is the period), or be more
complicated. In the last case, the fluid equations yielding the unperturbed v(x, f) may
be chaotic in a second sense, namely that the time dependence of v(x, ¢) at fixed x may
be chaotic. We refer to this as temporal chaos of the unperturbed solution, and we
emphasize its distinction from Lagrangian chaos.

For steady and time-periodic flows, the Lagrangian orbits can be either chaotic or
non-chaotic, and when an orbit x(f) is non-chaotic, its time dependence is quasi-
periodic (corresponding to a KAM torus). In cases where there are chaotic regions
amidst KAM tori, the considerations of our paper should be understood to apply to
a single chaotic ergodic region of the flow. In the examples we treat in §§4 and 5, we
use particular time-periodic flows ». For these flows there is Lagrangian chaos over
essentially the whole space. We believe, however, that the results obtained are
indicative of what happens in general, including steady flows that have ergodic regions
of Lagrangian chaos, as well as temporally chaotic flows.

The organization of this paper is as follows. Section 2 reviews the concept of the
cancellation exponent (Du & Ott 1993; Ott et al. 1992) which plays an essential role
in the subsequent analysis. Section 3 develops the growth rate formula for the fast
dynamo problem. The growth rate formula is not obtained rigorously, and so it is
useful to test it in examples. This is done in §§4 and 5. Section 4 treats an analytically
soluble case of the ‘stretch—fold—slide’ type (a variant of the ‘stretch-fold—shear’
dynamo introduced by Bayly & Childress 1988 and Soward 1987). The example of §5
is a numerically solved spatially smooth temporally periodic flow (Finn & Ott 1988 ; Du
& Ott 1993). For another numerical confirmation see the addendum by Bayly &
Rado that appears as Appendix B.

2. Cancellation exponent

Consider, for definiteness, the case of a steady flow, v = v(x). In this case (1) yields
an eigenvalue problem,

5;b(x)+0v-Vby(x) = b(x)-Vo +RL V2b,(x), N

for a magnetic field with space-time variation B(x,?) = e%*b,(x), where s; is the
(complex) eigenvalue corresponding to the jth eigenfunction b,(x). For a typical initial
condition, B(x,0), all eigenfunctions are excited. However, after a sufficient time,
B(x, f) will be dominated by the eigenfunction with the largest growth rate (i.e. largest
Re(s;)). Theory and numerical results show that the corresponding eigenfunction
b,(x) varies on fine scale for large R,,. In fact, balancing the last term in (1) with the
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FiGure 1. B, versus x for the model of (Ott et al. 1992; Du & Ott 1993) with R, = 10°.

other terms in the equation, one finds that the typical lengthscale for variation
of the magnetic field is (Moffatt & Proctor 1985)

€x = LO/R%n’ (3)

where L, is the lengthscale of the unperturbed flow v. Thus, as R,, is increased, b;(x)
varies on finer and finer scale. Figure 1 (from Du & Ott 1993) shows the magnetic field
in the y-direction as a function of the linear coordinate x for R,, = 107 after the field
has settled into its large-time asymptotic form. (The system resulting in figure 1 is a
simple baker’s map dynamo model on the interval 0 < x < 1 which we shall not
describe here.) The point is that the magnetic field in figure 1 exhibits extremely rapid
oscillations from positive to negative values, and this situation becomes more and more
extreme as R,, is increased.

In order to characterize this type of singular behaviour, a ‘cancellation exponent’
was introduced in Du & Ott (1993) (see also Ott ez al. 1992). As an example, consider
the situation in figure 1, and divide the x-axis into equal-length intervals of size ¢. We
then introduce the quantity,

where f .,dx denotes the integral over the ith interval of length ¢, and ¢ is large
enough that the x-dependence of B, has reached its final form in which there are
variations on the scale given by (8). Figure 2 shows a plot of In y(¢) versus In (1 /¢). The
data are well fit by a straight line for ¢ > €, ~ 1/RE,. (The deviation from the straight
line at large In(1/¢) is numerically observed to occur at smaller ¢ if R,, is increased).
Thus in the scaling range, 1 > ¢ 2 ¢,, we have

x(e) ~ 1/¢,
where the exponent « is the slope of the straight line in figure 2. We call x the
cancellation exponent. It is a quantitative characterization of the very rapid oscillations
in the sign of B,. For example, if B, were always positive, then the numerator and
denominator of (9) would be the same, so that y(¢) = 1, and x = 0 (no cancellation).

x(e) =2

i

J B,(x,H)dx
’

By(x, Hdx |,

)
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FIGURE 2. In y versus In(1/¢) for the same model (Ott et al. 1992; Du & Ott 1993) as was used
for figure 1 with R, = 10!, x = 0.43,

Increase of y(¢) with decreasing ¢ (which is necessary to obtain x > 0) occurs only
because cancellations between positive and negative B, in the sum ini B, dx| are
reduced for smaller .

Note from figure 2 that for ¢ < ¢,, the quantity y(¢) becomes constant. This is
because B, is locally approximately constant over distances less than e,. Hence, for
large ¢ and ¢ < ¢,, we have

1
f B,dx
0

by fodx zf
~ 1/, (10)

4

dx, while ]

B,

LBydxl ~ (1))

i
Thus setting € = ¢,, we conclude that

1
J dx / J’Bydx
0 0

The above considerations, illustrated for the variation of B, along a line, readily
generalize to surface and volume integrals (Du & Ott 1993). The case of interest here
is a volume, for which (9) is replaced by

where now i denotes a cube from an e-grid which covers the active dynamo volume ¥
(we assume that the denominator in (11) is not zero), and (10) is replaced by

J s e

So far we have been considering the case of large but finite magnetic Reynolds
number. In fact, the cancellation exponent can be computed directly from the infinite-
conductivity equation, (4). This represents an important simplification because now
one only need integrate ordinary differential equations, (5). In this case the solution of

By

xe) =2

4

: mn

L B(x, 1) d3x

L B(x,t)d’x

B(x,1) ~x (Ly/eg). (12)

f B(x,1)d*x
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(4) for a smooth initial condition continues to develop variation on finer and finer scale
as time increases, and this process continues forever. On inserting a large- but finite-

time solution of (4) for B in
J B(x,d3x ‘ /

a result similar to figure 2 still applies, and the resulting slope « in the scaling range is
the same (Du & Ott 1993) as would be obtained for the same flow with a large finite R,,
and ¢ large enough that the final spatial form determined by (8) has been attained. The
difference is that now the small-¢ cut off of the scaling range depends on how large ¢
is, and it decreases exponentially to zero with increasing ¢. The equality of the two
results for « is shown in Du & Ott (1993) and is reasonable on the basis that the effect
of resistivity is diffusive (the term R,!V?B in (1)) and thus manifests itself as a
smoothing of the magnetic field on the scale ¢, of (8). Such smoothing makes only a
small change in |f B(x, 1)d3x| if the dimension of the cube ¢ is large compared to e,.
Hence, the scahngs of x(e) and of ¥(¢) are expected to be the same for ¢ > ¢,. (See Du
& Ott 1993 for numerical tests and further discussion.) (In 13) note that we have
placed a tilde over yx to signify that the calculation is done using the magnetic field
obtained from the infinite conductivity equation, as opposed to (11) where a large finite
R, is used.)

e =2

)

(13)

J B(x,1)d?x|,
14

3. Growth rate formula

Assume that enough time has passed so that the magnetic field in a dynamo with
large but finite magnetic Reynolds number (R,, > 1) has evolved to the time-
asymptotlc state where field variations occur on the lengthscale L,/ Rf (equatlon (8)).
Now imagine that we divide the dynamo region into a grid of cubes of unit size 4, one
of which (cube j) is shown in figure 3(a). Let x = x; denote the point at the centre of
the cube, and let the cube be small enough that the action of the flow over a time
interval ¢ is to deform the cube in accord with (6), the linear approximation for small
deviations from an orbit. Let M(x,;, 7,7), obtained from solving (6), be the matrix
relating dx at time 7 and location x = x,; to dx at time 7+ and location x = x;,

8x,() = M(x,, 1,7)- 0xq,. (14)

As a result of the flow, the cube is deformed into a long thin fiat parallelepiped (figure
3(b) of dimensions (length, width, thickness) of the order of L;, § x L;, 8 x L, 8, where
L;, , ; are the magnitudes of the three eigenvalues of M(x;,?,7), and we choose the
subscripts 1, 2 and 3 so that

Ly>L,>2L

Because the flow is incompressible, L;; L;, Ly; = 1. Since the flow is taken to be chaotic,
we assume L, > 1, and, by incompressibility, we must then also have L;; < 1. It
suffices to think of the parallelepiped that J maps to as a rectangular slab (figure 3¢).
To see that this is so, we note that we will only need order of magnitude estimates of
f |B|dV over J and over the parallelepiped to which J maps. We also note that, for
typical flows and typical points x,;, the angles between the eigenvectors of the matrix
M(x,;, t,7) are order one. Thus our required estimates can be obtained by replacing J
by a parallelepiped J* whose centre is at x,; and whose edges are of length & and are
parallel to the eigendirections of M(x,,,t, 7). Mapping J’ forward by z, we obtain
another long thin flat parallelepiped (overlapping that in figure 3¢). The point is that
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FIGURE 3. (a) Cube of edge length 8. (b) Deformation of cube in (a). (¢) Rectangular slab
idealization of (b).

the angles between the edges of this parallelepiped will also be order one, and making
the edges perpendicular will thus not significantly alter our estimates. We are interested
in large ¢, so that L;; » L;,. On the other hand, we cannot let ¢ be too large since we
will also require that .

L6 <L, Li,6> Ly/Rz,. (15)

For a large fixed value of ¢ and sufficiently large R,,, we can choose a & such that these
inequalities hold. The first inequality is necessary so that the linear approximation
given by the matrix M(x,;, ¢, 7) is valid in cube j.

Now imagine that we divide the slab in figure 3(c) into small cubes of edge length
L;; 6. The number of such small cubes in the slab will be of the order of

L.L
N =213 16
j IJ}3 Lj3 i3 ( )
where the second equality follows from the incompressibility condition.

To proceed, it is necessary, at this point, to make an additional assumption which
restricts the type of chaotic flows that we consider. In particular, we shall assume here
that the magnetic field has local sheet-like structure. By sheet-like structure we mean
that the magnetic field is slowly varying on locally parallel surfaces (sheets), across
which the variation is very rapid, and, for scales larger than L,/ Rt the field effectively
concentrates on a fractal set of these sheets (Du & Ott 1993). This is so for the
important case of steady flows. More generally, as shown in Du & Ott (1993), for there
to be sheet-like structure it is necessary that the flow be non-contracting in two
directions, i.e. in addition to the condition L;, > 1, implied by the assumed chaos of the
flow, we also require L,, > 1. To see why sheet-like structure is implied for the case of
two expanding directions, L, , > 1 > L;;, we note that under this condition, at a point
x there is a two-dimensional unstable manifold (the sheet) through x. Taking a point
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x’ on the sheet through x and using (3) to evolve the orbits through x and x” backward
to time zero, the two backward orbits approach each other exponentially. Thus, if the
points x and x” are close, then the orbits leading to them from time zero were always
close. Hence integration of (5) yields nearly the same B at the two points x and x". On
the other hand, if x” were chosen near x, but on a different sheet, then the backward
orbits through x and x” would diverge exponentially. If, by time zero, the two orbits
have separated by a distance of the order of L, then the values of B at x and x/,
obtained by integrating (5), would be very different. Hence, for large time, B varies
wildly across the sheets. (When there is contraction in two dimensions, L;, < 1, the
field is smooth only in the one expanding direction, and is fractal in the two directions
transverse to it (Du & Ott 1993); we then say that the field structure is rope-like.) In
practice, given an unperturbed flow v, it is not hard to numerically test whether the
assumption of locally sheet-like magnetic field structure applies (see § 5). The important
point is that, in the case of locally sheet-like structure, the fields in all of the small cubes
that we have divided the slab in figure 3(c) into are roughly the same; for example this
is certainly so if the sheets are parallel to the plane determined by the largest area face
of the slab in figure 3(c). Indeed, stretching in the directions corresponding to L;, and
L,, tends to align this plane with the sheets.

If there were no resistive diffusion (the term V2B/R,, in (1)), the magnetic field
following a point initially in the cube of figure 3(a) would increase in proportion to the
net stretching of a field line element (i.e. by a factor of order L;;), and the spatial scale
for variation of the field would decrease by a factor of order L;;. However, resistive
diffusion prevents variations on scales smaller than L,/ R (equatlon (8)). Thus, in the
presence of small diffusion, the contraction of the cube along the L,, direction does not
create scale variations finer than L,/R:,.

Denote by J the original cube (figure 3a) and by S one of the small cubes of edge
length L,; 8; see ﬁgure 3(c). If we magnify S by a factor L;;, then the resulting magnetic
field varlatlons in J will dlffer from those in S in that the fine-scale field variations in
Jarecutoff at ¢, ~ L,/ Rz,, while those in the magnified-S cube are cut off at the larger
(magnified) scale ey, ~ L]3 ex ~ L Ly/ Ri . (The second inequality in (15) says that
the scale e, is small compared to the edge length ¢ of the magnified cube.) Hence by

(12) we have
j |B|d3x/
S

and f [B|d®x /
J

J |Bjd®x
Thus S

J Bd3x
S

Now consider the area ABCD shown in figure 3(a). During the time ¢ this area is
carried to A’B'C’D’ as shown in figure 3(c). Since L;; 6> L,/ R | the magnetic flux is
effectively frozen in as the area convects so that the fluxes through 4ABCD and
A’B'C’D’ are approximately equal. Thus we have

J Bd?*x
J

J Bd3x
S

X (€xn/Lo) ™

Bd3x
S

~ (6x/Ly) ™"

f |B|d®x
J

Bd3x

J

Bd3x
J

~ (L) (17)

= (Ljs/Ljg) Ljs %
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Using (16) and the incompressibility condition, L;; L;, L;, = 1, this becomes

J Bd3x
J

The factor L;, on the right-hand side of (18) results simply from the fact that, in the
absence of electrical resistivity, B obeys the same equation as §x (see (5) and (6)). Thus

B'inslab, attimet+r ~ M(x()j’ t,7)- B, J,attimers (19)

and B grows by the factor roughly L;, (the magnitude of the largest eigenvalue of M).
Combining (17) and (18), we have

N;

f Bd3x\ ~ L,
S

. (18)

L, L, f |B|d®*x ~ N, J |B| d%x. (20)
J S

Summing over all cubes j yields

where V denotes the entire ergodic dynamo region. The quantity summed over j on the
left-hand side of (21) consists of two factors: one factor, L, Lf;, is determined by
the orbit during the time interval ¢; the other factor, f |B|d®x, 1s determined by the
evolution prior to the time interval ¢. By the assumed claotic nature of the orbits, the
distant future and the distant past (distant in terms of many Lyapunov times) are

effectively uncorrelated. Hence

S (L L) f IBld®x ~ (Ly(x, 1) L5, D) 5, f Bd®x
j i i JJ;

o) [ Bes] o @
14 timer

where L,(x, ¢) are the magnitudes of the three eigenvalues (i = 1,2, 3) of M(x, t,7) and
{...» indicates an average over x in the volume V. From (21) and (22)

[ f lBldax} z<Lng>U |B|d3x] . (23)
14 timet+r 14 timer

We now assume that during the time interval ¢ the magnetic field grows roughly as
exp (Y1) (cf. (2)). (This neglects other non-exponential time dependences of the
magnetic field, such as superposed sinusoidal dependences (appropriate for steady or
time-periodic flows) or a more complicated time dependence when v is temporally
chaotic.) Equation (23) thus leads to the main result of this paper,

Vi = lim‘i-ln (L, L5, 0Z)]

t—>o0
which relates an infinite time limit of an average of the finite-time Lyapunov numbers,
L, and L,, and the cancelation exponent, «, to the dynamo growth rate, v,.. Note that

cancellation (x > 0) decreases v, from the upper bound conjectured in Finn & Ott
(1990),

Vi S liméln (L. 25

[ges)
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Under certain conditions (Yomdin 1987) the right-hand side of (25) may be identified
with the topological entropy of the flow.

In order to numerically utilize (24), one can proceed as follows. First sheet-like
structure must be confirmed. A rough way of doing this is to calculate the Lyapunov
exponents in the ergodic dynamo region; if two of them are non-negative, then that is
a good indication that the structure will be sheet-like. Another method is to solve (5)
numerically to make contour plots on a plane cutting the dynamo region of the
component of B normal to the plane (cf. figure 8 of §5 and Du & Ott 1993). As time
increases, one can see, in such plots, that the regions of large magnetic field tend either
(Du & Ott 1993) to locally parallel curves (the intersections of the sheets with the plane)
or many ever-decreasing-in-diameter blobs (the intersections of the ropes with the
plane). (This type of computation is described further in §5.) If sheet-like structure is
confirmed, the next step is to calculate the cancellation exponent. Since the structure
is sheet-like, this can be done using a line segment cutting the sheets (rather than a
volume, as in (11)). After choosing a line segment in the dynamo region, a component
of B normal to the line is computed (again using (5)) at a large number of evenly spaced
points along the line at a time sufficiently large that B varies on a very fine scale. The
cancellation exponent is then computed as the slope of a plot of In ¥(¢) (see (13)) versus
In (1/¢) in the scaling range. Next we compute (L, L5» and plot In (L, L£» versus ¢. The
estimated value of the growth rate y, is then the slope of this plot. To compute
(L, Lt>, we proceed as follows. We first sprinkle many initial conditions uniformly in
the ergodic dynamo region V. Then for each initial condition x, we compute L, by
choosing an arbitrary initial dx, and integrating déx/dt = - dx forward, along the
trajectory from x, for time ¢. Since L, is the magnitude of the largest eigenvalue of
M(x,t,7), we have that, for a typical choice of éx,

_ 1 (18x(0)
L~ 71n( . ) (26)

Next, we obtain L, at x by choosing an arbitrary ‘final’ §x, at x and integrating
déx/dt = M- 6x backward to x(0) to obtain dx(0). Since 1/L, is the magnitude of the
largest eigenvalue of .4 we have,

1 (16x(0)f
L, ~71n( ] ) 7

We then form the quantity L, L§ and average its value over all the initial conditions.
Care must be taken in doing these computations, because the requirement of having
good statistics for the average typically becomes more difficult to satisfy at later times
(thus requiring the use of more initial conditions). In the example of §4, we use both
(24), and a direct computation of the diffusionless exponential flux growth rate through
a line segment to estimate y,. The two computations agree to within the accuracy
obtained, but the computation based on (24) is much less demanding and also
converges more rapidly.

Remark. Ttis well-known that fast dynamo growth is inherently a three-dimensional
process (Zel’dovich’s antidynamo theorem). For example, in a purely two-dimensional
situation where B and » depend only on x and y and lie in the (x, y)-plane, no dynamo
growth is possible. In the context of our growth rate formula, (24), this is reflected by
the fact that cancellation is essentially perfect in two dimensions; x = co (see the
remark following (46b)), which, from (24), yields no growth. As shown in figure 4,
perfect cancellation in this case is due to the topological constraint that magnetic field
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FIGURE 4. Flux tube ab in (a) evolves under a chaotic flow to (b).

lines do not cross as the situation evolves, and this applies whether or not the two-
dimensional flow is Lagrangian chaotic. Figure 4 shows a single flux tube with its ends
anchored at the points a and b. At ¢t = 0 (figure 4a) the flux tube crosses the line cd,
creating one unit of upward flux. As time goes on the flux tube is stretched and
contorted. At some later time (figure 45) the net upward flux through cd can only be
either +1, —1 or O (in units of the flux at # = 0) because upward and downward
crossings of cd by the flux tube precisely alternate.

Remark. Since L, < 1/L, for sheet-like magnetic field structure, we see that (24) can
yield exponential growth only if x < 1. See Appendix A for a discussion of the case
k> 1.

4. Stretch—fold-slide dynamo
4.1. The model

Bayly & Childress (1988) consider time-periodic flows that are independent of the axial
coordinate z and that, in each time period, consist of two phases. In the first phase
v, = 0, so that fluid particle displacements are purely in the x- and y-directions. If at the
beginning of the nth period a fluid element has coordinates x, and y,, its x and y-
coordinates after the first phase of motion are displaced according to a two-
dimensional map,

(xn+1’ yn+1) = (Fi(xm yn)a Ea(xn’ yn)) (28)

During the second phase v, + 0, but v, = v, = 0, so that the fluid particle displacement
A(x,y) is purely in the z-direction,
Zn+1 = Zn+A(xn’yn)' (29)
In a case, such as that above, where v(x, ¢) is time periodic with period T,
(v(x, ) = v(x,t+ 7)),

the solution of the trajectory equation, dx/ds = v(x, t), yields a map giving x at time
t=(n+1)T in terms of x at time ¢ = nT,

X, = M(x,),

where x, = (x,,5,.2,). Let B, (x) denote the magnetic field at time ¢ = n7. Since B
evolves in the same way as dx in the infinite-conductivity case ((5@) and (6) are the
same), the evolution of B, is governed by the Jacobian matrix DM(x) of the map. That
is

B,.(x) = DM(M(x))- B,(M(x)). (30)
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FIGURE 5. Action of the map (31) on the unit square, (0,0) < (x,y) < (1, 1). (@)= ():
incompressible stretch; (b) > (¢) - (d): fold.

We now specialize to a particular form for the two-dimensional map (28) (Finn &
Ott 1988),

ox, for y,<a,

X ={/)’(1—xn)+a for v, > a, (31a)
Vul for y,<a,

Yan ={(1 —v)B for y,>a, (315)

where a+ 4 = 1. This map is an incompressible version of the ‘generalized baker’s
map’ (Farmer, Ott & Yorke 1983). Its action on the unit square is illustrated in figure
5. In addition, to further facilitate the analysis, we take v, during the shear phase to be
v, = 0for x < aand v, = v,, for x > a, where v,,(?) is spatially constant in x > a. Thus,
A appearing in (29) is likewise zero in x < « and a constant, call it 4,, in x > a. That
is, we slide the region x > « forward by the distance 4,. Let the magnetic field at the
end of the nth step be independent of y and of the form

B = Re (B,(x) exp (k2) y,}, (32)

where the exponential z-dependence corresponds to the assumed homogeneity of the
flow in z. Equation (30) then yields

_fa'B,(x/a) for x<a,
Byl —{ fBI(1—x)/fle® for x>a. (334)

where 6 = kd,+n. Equation (33a4) can be represented symbolically by a linear
operator &#,
B, (x) = Z[B,(x)]. (330)

In the limit of R,, > oo the magnetic field concentrates on a fractal set (Finn & Ott
1988; Du & Ott 1993). Thus we assume that the resulting time-asymptotic field is a
generalized function which is an eigenfunction of (33). Formally, this is expressed as

Z1B(x)] = AB(x), (34)
where A =|Ael?

is the complex eigenvalue corresponding to the generalized eigenfunction B(x). The fast
dynamo growth rate is then

1
Ve =7 1niAl (3%)
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where T is the temporal period of the stretch-fold—slide flow, and instability
corresponds to [A| > 1. The angle ¢ specifies the fundamental frequency of oscillation,
¢/ T, for the eigenfunction.

4.2. Check of the growth rate formula

The advantage of the model (334) is that analytica&l calculations are relatively easy. To
calculate A, we consider the flux integral @,,,, = f o Bas(x)dx. Using (33a) for B, ,,(x)
we immediately obtain

¢n+1 = (1 +ew) ¢n (36)
Hence, identifying A with the flux growth rate (Finn & Ott 1990), we have
A=1+¢€", 37

which yields instability for |1 +e'| > 1. (Note that ¢ = arg(A) is a function of #;
tan¢ = sin6/(1+cos6).)

In what follows we attempt to show that (35) and (37) for the growth rate satisfy the
general formula (24). To this end we normalize the eigenfunction so that f 01 B(x)dx =
1, and we write the magnetic field at z = 0 and at the time n (n < 1) as

B(x,n) = Re[B,(x)] = Re[A\"B, B(x)], (38)

where B, = |B,|exp (if) is a complex constant, and the real part used to obtain the
actual field B(x, n) results from our use of the complex representation, (32). Substituting
in (9), we define

(e ) = X [Re{e u(I)}, (39

where I; denotes the jth interval of length ¢, u(1)) = f ;. B(x)dx, and X(e, £) in (39) is y(e)
of (9) multiplied by the factor |Re {ei¢ f : B(x)dx}|. Making use of B(x) = A"LZ[B(x)]
and the specific form of # given by (33a), we have from (39)

x(e, &) = [A 7 [x(e/ot, E— @) + x(e/ B, E—p+6)]. (40)
Expanding y(e, &) in a Fourier series in £, we have
X(69 g) = 2 Xm(e) eimg, (41)

which when substituted in (40) yields

Al Xm(€) €™ = X(6/2) + Xmle/ B) ™. (42)

To solve (42), we assume solutions of the form y,,(¢) = K,, e *» (where K,, and «,, can
both be complex). Substituting this form in (42), we obtain an equation for the
exponent «,,,

|A] €8 = gkm 4 rm glmd, (43)
This equation, in general (i.e. barring special choices for #), has an infinite number of
complex roots. Let
K = KD+,
where «{) and «{ are real. Then
e~*m = ¢ exp [ix? In (1/¢)].

Thus such a root corresponds to an increase of y,(¢) with decreasing ¢ as e
modulating a sinusoidal oscillation in the variable In(1/¢) with a period 2r/«%. As
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e—0, the sum in (41) will be dominated by the root of (43) with the largest value of
&, Taking magnitudes of both sides of (43) and noting that |a+b| < |a|+|b|, we have

Al < s + 5. (44)
Since o and g are both less than one, (44) implies an upper bound on <)
) <R, 45)

where & is the unique real positive root of
|A] = o+ B~ (46a)

We now note that this upper bound is actually attained: setting m = 0, we see that (43)
reduces to (46a). Thus & is in fact the cancellation exponent «,

Al = of + <. (46 b)

(Note that in the purely two-dimensional case k4, = 0, implying by (37) that A =0,
which from (465) yields x = ©.)

We now show that (46 b) is precisely the result obtained from (24). To do this we note
that, for the map (31) for any initial condition (x,,y,), at time »nT,

L =1/Ly=(1/ay (1/B"7, (47

where r is the number of times the orbit of length »n starting from (x,,y,) visits the
region x < a. (Note that L, =1 (from (29), éz,,, = ¢z, for éx, = dy, =0).) The
second equality in (47) results since, by figure 3, there is a stretching by the factor (1/a)
each of the r times the orbit visits x < «, and a stretching by the factor (1/8) each of
the (n—r) times it visits x > «. We now note the following result from Farmer et al.
(1983). The area of initial conditions yielding orbits of length » that visit x < « for r
times is
Ar,n = Cﬂ,rarﬂﬂ_r’

where C, , = n!/[(n—r)!r!] is the binomial coefficient. (Note that

S 4, ., =@t =1,

r=0

as it should.) Thus
(L L) =KL™) = X A4, a7 ")

=0

— Z Cn,TaKTﬂK(n_T) — (OLK+ﬁK)n. (48)

Now, substituting (48) in (24), and identifying ¢ with #nT and |A| with exp(y, T), we
immediately obtain (465). Hence, we have verified (24) for this example.

4.3. Numerical computations

In the next section we will provide numerical tests for (24). These additional tests will
be via numerical experiments, and these experiments are necessarily subject to the usual
limitations imposed by finite computer resources. Thus it is useful to benchmark the
accuracy and performance of the numerical methods to be used in the next section by
applying them to an analytically soluble example. Figure 6 shows such calculations
using the stretch—fold—slide model of (334) with 6 = 1.4, « = 0.45, £ = 0.55, and an
initial condition of B, _,(x) = 1.
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FIGURE 6. (a) In} [, B,(x)dx| versus n. (b) In ¥(e) versus In(1/e) calculated at n = 18. (c) In<{L{™)
versus n for N, 10"’ Superposed straight lines in (a) and (b) show the fits used to determine the
numerical estimates quoted in the text. For all three plots, o = 0.45, § = 0.55, 6 = 1.4 and the initial
field in the z = 0 plane is one.

Flgure 6(a) shows a plot of In| f B,(x,n)dx| versus n. Here B,(x,n) is calculated at

N, = 10% evenly spaced points {x;} in the interval [0, 1], and the integral is approx1mated
as N, 12 B,(x;,n). Oscillations from positive values (indicated by + in the figure)
to negatlve values (indicated by — in the figure) occur with a period in n of 2rt/¢. The
plot is done for two different grids (the dashed line and the dash dot line), i.e. one grid
is shifted from the other grid by je where ¢ = 1/N,, = 107°. For n < 24 the two plots
are the same; after this time they diverge. This occurs because the magnetic field tends
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to oscillate more wildly and to concentrate on a fractal as time increases; hence the
number of points needed to accurately approximate the integral becomes larger as time
increases. Past n &~ 24 we regard the results as not reliable. From the straight-line fit in
the figure we obtain a flux growth rate of 0.42, as compared to the theoretical value of
0.426 ... from (37).

Figure 6(b) shows a plot of In §(¢) versus In(1/¢) using N, = 10° points and the
magnetic field at iterate number # = 18. The interval used is again [0, 1]. We see that
atsmall ¢ (i.e. In(1/¢) 2 10) the numerical plot begins to deviate from the fitted straight
line as a result of € approaching the smallest scale generated at n = 18. At large ¢ (i.e.
In(1/€) < 3) there appear to be fluctuations which may be either statistical or due to
K, roots of (43) with non-zero imaginary parts. In the intermediate scaling range, the
data are very well fitted by a straight line whose slope yields « &~ 0.382 as compared to
0.385 from (465).

Figure 6(c) shows a numerical plot of In{Li™*) versus n, where the average
is performed over N,, = 10° initial points evenly spaced in the intetval [0, 1}. Over the
time interval shown, the data are almost perfectly fitted by a straight line whose slope
yields a growth rate of y, = 0.424, which agrees well with the theoretical value of
0.426....

Note that the difference between using (L, L5> and the individually averaged
Lyapunov numbers in the combination {L,){L,>* becomes greater the more
inhomogeneous the stretching is, and the results for the two are the same if the
stretching is uniform (e.g. & = g = }in the example of this section). For example, in the
case of figure 6 (a = 0.45, # = 0.55) the difference between our growth rate given by
(24) and that calculated using (L, »* *in place of {L}™*) is only 1 % ; on the other hand,
for « = 0.3 and £ = 0.7 this difference increases to about 15 %, a difference that would
be detected by our numerical calculations.

5. A temporally periodic flow
5.1. The model flow
Consider an incompressible flow

U(xa t) =X Uz(y’ z)f(t)+y0 Uy(25 X)f(t— T/3)+ ZO vz(xs y)f(t_zT/3)a (49)

where f(¢) is periodic function with period T and f(r) =0 for T/3+nT <t <(n+1)T
(see figure 7) so that the flows in the x-, y- and z-directions are turned on separately.
Also we assume that f(7) is normalized so that [ f(f)dt = [ f(r)dr = 1. Integrating
dx/dt = v(x, r) through one period T, one obtains a volume-preserving map relating x
att=nTtoxatt=m+1)T

xn+1 = xn+vx(ynazn)a
V1 = Yt 0y(Z5s X 11)s (50)
Zn+1 = Zn +vz(xn+1’yn+1)3

which is not dependent on the specific form of f(¢) (thus the fast dynamo problem will
also be independent of the specific form of f(¢); see (55)). Choosing v,, v, and v, in the
form

v, = Asinz+Dcosy,

v, = Bsinx+Ecosz,
v, = Csiny+ Fcos x,
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the flow, (49), yields the map
Xpy41 =X, +Asinz, +Dcosy,,
Vns1 = Yp+Bsinx, +Ecosz,, (51
Zy1=2,+Csiny, +Fcosx,,,.

(Note when A = E, B= F and C = D, the map (51) becomes the so-called ABC map
of Du & Ott (1993), Feingold, Piro & Kadanoff (1988) and Finn & Ott (1988).)

In the following subsection we present numerical results for this flow. For all the
reported numerical results, the initial magnetic field (§5.2) is the z-direction with a
uniform strength of one, and wechoose A =B=C=0,D=23,E=25and F=2.7.
For these chosen parameters, the three Lyapunov numbers are (0.74, 0.25, —0.99) and
the chaotic region extends throughout almost all space, i.e. there are no sizeable KAM
tori.

5.2. Fast dynamo problem

Let B,(x) denote the magnetic field at time ¢ = nT. The evolution of B,(x) in the
infinite-conductivity case is governed by (30) with DM(x) the Jacobian matrix of the
map transformation (51). Thus, to calculate B, at any given point x, we first iterate the
map (51) backward » steps to find the orbit leading to x at time » from an initial
condition at time zero. We then iterate (30) forward along the above-determined orbit
using the specified initial condition B, _,,.

Refer to figure 8(a-d) (similar figures are given in Du & Ott 1993). To explain
the meaning of these figures we describe how they are produced. We first calculate
the magnetic field on a 100x 100 grid on the surface S:3.5<(x,y)<3.6 and
z=10. We label the N = 100x 100 = 10* grid points with an index i (1 <i< N)
according to the prescription that the component of the magnetic field normal to S at
the grid point i, denoted by B, ,, satisfies |B, ,| > |B, ,,,|- (That is, we arrange the B, ,
in size order). We then estimate @’ = fs |B,|d%x via

N
@'~ Y |B, |A/N,
fuml
where A4 is the area of S. Now, starting with the grid point with the largest value of | B, ||
(i.e. the smallest i), we successively mark positions on the grid until the plotted points
account for 90 % of &’. That is, we mark the grid point with indices 1 < i < N, where
N, is the smallest integer satisfying

N, N
121 |B, | A/N = 0.90121 |B, ;| A/N.
The points in figure 8 with positive B, and with negative B, are plotted as plus and
minus signs, respectively. Figures 8(a)-8(d) refer to four successive times, n =4, 5, 6
and 7. We clearly see from these figures that finer scale structure is generated with
increasing time. Referring to figure 8(d) we also see that the magnetic field variation
is apparently predominantly in the direction perpendicular to long thin bands in the
figure. Along the direction of these bands the magnetic field is comparatively weakly
varying. The observation that on a two-dimensional cross-section the magnetic field is
weakly varying along curves indicates that the magnetic field is weakly varying on two-
dimensional surfaces in the whole three-dimensional dynamo region. Thus we have
verified that the generated magnetic field structure is sheet-like.

We now calculate the flux growth rate by a direct computation of the flux. Since the
magnetic field is sheet-like, a line segment, instead of an area, will be sufficient. The
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FIGURE 9. (a) In|®,| versus n. The superposed straight line in (a) is a line of slope determined from
(). (b) In %(e) versus In(1/¢) calculated at n = 14. The straight line shown is the fit to the data. (¢) In
(L, Ly> versus n for N, = 10°.

chosen line segment has y- and z-coordinates y = z = 1 and has a length of 2r parallel
to the x-axis. We calculate B, at N, = 107 evenly spaced points on the line segment to
approximate the flux @ as X2nB,/N,,. (We have also done computations with another
line segment which gives a similar result.) Figure 9(a) shows plots of In|®| versus n for
two different grids (the dashed line and the dash-dot line). In the range # < 13 the two
results agree, showing that the data are reliable in this range. For n 2 13 the results
using the two grids begin to diverge, indicating loss of sufficient resolution in the
calculation.

Next, we calculate the cancellation exponent . We use the same line segment as in
the previous paragraph and calculate the magnetic field on N, evenly spaced points for
time n = 14. We then calculate j(¢) and graph the plot of In %(¢) versus In(1/e) as
shown in figure 9(b). The straight line is the linear fit to the data and its slope yields
x = 0.40.

Finally, we calculate the average (L, L%) as a function of time using the method
described at the end of §3. Figure 9(c) show a plot of In<{L, L) versus n, where the
average is take on N, = 10° initial points. The data are almost perfectly fitted by a

10-2
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straight line, whose slope yields a growth rate of 0.48. We then fit the data in figure 9(a)
up to n ~ 13 with a straight line of slope 0.48. The fit is shown as the solid line in figure
9(a). It can be seen that the line fits the data reasonably well.

6. Conclusion

This paper has developed a simple formula, (24), for the dissipationless limit (i.e.
R,,— o0) of the growth rate of the fast kinematic dynamo instability. The growth rate
is given in terms of the cancellation exponent and the infinite-time limit of an average
of finite-time Lyapunov numbers of the chaotic flow. The quantities in the growth rate
formula can all be obtained solely from consideration of the dissipationless dynamics.
Thus we establish a connection between the ergodic stretching properties of the
underlying chaotic flow and the instability growth (see also Aurell & Gilbert 1992;
Finn & Ott 1990). Since the result is based on heuristic considerations, it has been
checked against an analytically soluble example and numerical experiments, with good
results. The numerical experiments also show that numerical calculations based on the
growth rate formula are very feasible and converge well.

We thank John M. Finn for many discussions and useful comments. We also thank
Jane Wang for pointing out some numerical mistakes in §6. This work was supported
by the Office of Naval Research (Physics).

Appendix A. The case « > |

In the main body of this paper, we have discussed cases where « < 1. When « > 1,
(24) implies that there is no exponential growth (and thus no dynamo action) for sheet-
like magnetic field structure. However, in numerical calculations care must be taken
when this is the case. In particular, our definition of x given in §2 makes sense for
k < 1, but has to be modified to define « so that the more singular case of x > 1 makes
sense.

From discussions in §2, we have

z

i

~ 1/ec for e> e,

j. B(x, f)dx

(2

Here i denotes one of the e-length intervals. Since the total number of e-length intervals
is of order (1/¢), the average of |f‘ B(x, t)dx| is given by

<

Numerically, we calculate the magnetic field at a large number of evenly spaced points,
and the integral in (A 1) is estimated as

LB(x, f)dx ’ > ~ €, A1

J;B(x, t)dx‘ ~ ‘A > B(x,, 0

Xyl

; (A2)

where 4 is the separation between two neighbouring points, x,, denotes the coordinates
of one of the evenly spaced points, and 7, denotes the ith interval. For k > 1, (A 1) then
implies that the average of | f ,B(x, ) dx| (or |prs 1, B(x,, 1)]) increases with decreasing
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FIGURE 10. In §(¢) versus In(1/e). The cutoff occurs near In(1/¢) = 6.0 owing to our finite number
of applications of the map (n = 12).

¢ (even though the number of contributing points decreases) provided that € > ¢,.
Hence, for a single point x,, in I;, we typically expect to find that

|B(x,, )l 4 2 | [, B, 1)dx|.

The estimate of | fi B(x,t)dx]| via (A 2) thus can depend strongly on whether a single
bordering point is included in I, or not. That is, the inclusion or exclusion of a single
boundary point in the grid can make a large change in | f ,Bdx|. Thus, for «> 1,
computation of « in this way does not make sense.

To remedy this, we introduce the following improved definition of x. We first smooth
the magnetic field over a range ¢ > ¢,,

e b gy, (A3)

B(x,t,¢) = fB(x’, 1) x ke

(The result for « is independent of the precise form of the smoothing (Gaussian for
(A 3)).) Then we calculate y(c) via

le’(x, te)|d3x

x(e) = : (A4
f B(x,t,6)d*x
12
The cancellation exponent « is then given by
. Inx(e)
= lim . AS
S Ra/o B>

Noting that x(e) in (A 4) is essentially the left-hand side of (12) and that (A 5) implies
the scaling on the right-hand side of (12) with ¢, replaced by ¢, we see that our new
definition for « is consistent with the previous one. We have numerically verified for
several examples that, as expected, this definition give the same result as the definition
in §2 when < < 1.

As an illustration we now use the model in §4 to test the modified definition of the
cancellation exponent in the case x > 1. We choose a = 0.45, #=0.55 and 6 = 2.8.
From (46b), we obtain a theoretical prediction of « = 2.58. In figure 10 we show our
numerical plot of In y(¢) versus ln(1/¢), in which each diamond represents one data
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point and the solid line is the linear fit to the data. The slope of the linear fit yields an
estimated value of x = 2.36, which is in reasonable agreement with the result of (465).
Numerical application of the definition in §2, on the other hand, yields x = 1 in all
cases where the theory predicts « > 1.

Appendix B. Cancellation exponents of the stretch—fold-shear dynamo

By B. J. Bayly' and A. Rado*®

! Mathematics Department, University of Arizona, Tucson, AZ 85721, USA
% Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012, USA

The stretch—fold—shear dynamo introduced by Bayly & Childress (1988) is a simple
model akin to the Finn—Ott generalized baker’s dynamos (Finn & Ott 1988) and the
stretch—fold—slide model analyzed by Du and Ott in the foregoing paper. Because the
shear is smoothly varying, the Bayly—Childress model cannot be solved exactly except
in special cases. It is still easy to treat numerically, and represents an intermediate case
between analytically solvable models and the extremely complex dynamos seen in
chaotic three-dimensional flows. Stretch—fold—shear models have the nice feature that
the shear parameter can be varied continuously. When Du and Ott first presented the
idea of the cancellation exponent (Du & Ott 1993), we decided to find out how the
cancellation exponent depends on the shear parameter, and see whether there was any
connection between the cancellation exponent and the growth rate.

The stretch—fold—shear dynamo (Bayly & Childress 1988) is described by the
operator G:

[GBI() = 2exp(—2nia(y—%»{”(2y) if 0<y<g ®B1)

—-b2-2y) if i<y<l.
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function of log,(1/¢) fore =277, p =0, 1, ...,10. Curve (b) (dotted line) is the straight-line fit to the
datapoints for p = 3,4,...,10.

Here b(y) is any complex scalar function defined on 0 < y < 1, and « is the shear
parameter. We discretize (B 1) by dividing the interval (0,1) into N = 2¥ equal
subintervals and approximating b(y) by a constant value in each subinterval. This
yields a finite-dimensional matrix approximation to the operator G. The eigenvalue
Al@) of largest modulus and the corresponding eigenvector b = (b, b,, ...,by) can
easily be found. The growth rate of the stretch—fold-shear dynamo is

(@) = log (JA(2))). (B2)

Curve (a) in figure 11 shows the growth rate as a function of «. )

The cancellation exponent «(«) is computed using the dominant eigenvector b as the
‘density’ of the signed measure. Using ¢ = 27? for p = 0 to P yields graphs like figure
12 for log, x(¢) versus log, (1/¢). The graphs we obtained are all fitted extremely well
by straight lines, showing the existence of a robust cancellation exponent. Curve (b) in
fisure 11 shows the cancellation exponent « as a function of «. It is plausible that a
simple linear relation exists between the cancellation exponent and the growth rate. Du
& Ott’s theory predicts

(@) = 1—y(x)/log(2). (B 3)

Curve (c) in figure 11 shows this prediction, and the agreement with the direct
computation is excellent.
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