Observations of stellar dynamos

Ansgar Reiners Institute for Astrophysics Göttingen

٣.

The high-energy Sun and solar variability

2007

171 Å, T≈1.3MK

284 Å, T≈2.0MK

195 Å, T≈1.6MK

304 Å, T≈1.3MK

Magnetic Activity

Mægnætøgram

Lesson learned from the Sun:

- 2. Fields generate "activity"
- 3. Some field properties are cyclic

Observations of stellar dynamos

- 1. Introduction to stellar magnetism
- 2. What can we observe?
- 3. Observational evidence
- 4. The general picture

Observations of stellar dynamos

- 1. Introduction to stellar magnetism
- 2. What can we observe?
- 3. Observational evidence
- 4. The general picture

Where do stellar magnetic fields come from?

Fossil
Generated by dynamo

Plasma motion: Convection, Rotation

Star formation

Contraction of the proto- and young star

+ field amplification

Before and on the Main Sequence

Convective properties of low-mass objects

The (cyclic part of the) solar dynamo may be located at the tachocline – the interface layer between convective envelope and radiative core.

There is no tachocline in lowmass stars!

Sun-like star

Low-mass star, brown dwarf

Planet

Spin Down after star has formed

Expanding, ionized wind couples to magnetic field

Schematic rotational evolution

Sunspots and differential rotation

Observations of stellar dynamos

1. Introduction to stellar magnetism

- 2. What can we observe?
- 3. Observational evidence
- 4. The general picture

Observations I: Rotation

Observations II: non-thermal emission (activity)

Observations III: Presence of magnetic field (Zeeman effect)

Integrated light: Stokes I Polarization: Stokes V, Q, U

Examples of magnetic field measurements in integrated light (Stokes I)

Reiners & Basri, 2007

Star	Spectral Type	log (L _X /L _{bol)}	$\log (L_{\rm H\alpha}/L_{\rm bol})$	<i>Bf</i> [kG]
GJ 1227	M4.5	< -3.85	< -5.0	
GI 729	M3.5e	-3.50		2.0*
GI 873	M3.5e	-3.07	-3.70	3.9*

Johns-Krull & Valenti, 2000* (from atomic lines)

Examples of magnetic field measurements in polarized light (Stokes V)

© MM Jardine & JF Donati

important: observation of uncancelled flux only!

Morin et al., 2010

Differential rotation

Rotation period can change with time

Differential rotation

Example: HD 121370 $\alpha/\sqrt{\sin i} = 0.37 \pm 0.1$

red: observed profileblue: profile of rigid rotator

Observations of stellar dynamos

- 1. Introduction to stellar magnetism
- 2. What can we observe?
- 3. Observational evidence
- 4. The general picture

The rotation-magnetic activity relation

Activity saturation is due to magnetic field saturation

Mean rotation velocities in field stars

(i.e., after enough time to calm down but before later phases of evolution)

Braking depends on convective structure

Rotation of low-mass stars

Reiners et al., 2012

Observations of average surface magnetic fields

Large-scale geometries from Stokes V

Morin et al., 2010

- More flux detected at lower masses (and Rossby numbers)
- Different geometries found
- Large-scale field only (un-cancelled flux)

Comparison between flux detected in Stokes I and V across the boundary to complete convection

Large-scale geometries from Stokes V

What about the missing 75 – 95% of the magnetic field?

Evidence for cycles in sun-like stars

Call H and K emission relative S

Polarity reversal in Doppler maps (?)

Fares et al., 2009

Differential rotation

Ammler-von Eiff & Reiners, 2012

Differential rotation

Theoretical predictions for F8 and G2 stars (Küker & Rüdiger, 2005)

Ammler-von Eiff & Reiners, 2012

Observations of stellar dynamos

- 1. Introduction to stellar magnetism
- 2. What can we observe?
- 3. Observational evidence
- 4. The general picture

The picture

Rotation = magnetic field = activity
Field density saturates at a few kG

Convective flux-scaling from geo-dynamo models

Christensen, Holzwarth & Reiners, Nature, 2009

In the model, flux is generated in the entire convection zone.

The picture

- 1. Rotation = magnetic field = activity
- 2. Field density saturates at a few kG
- 3. Maximum magnetic energy scales with convective energy

What about the transition to fully convective stars?

Why are fully convective stars faster and more active? Less braking due to different field geometry?

Radii are very different

Evolution of angular velocity

Reiners & Mohanty, 2012

Low-mass stars spin-down slower;

fully convective stars are smaller than stars with radiative cores

Picture can explain activity lifetimes

The picture

- 1. Rotation = magnetic field = activity
- 2. Field density saturates at a few kG
- 3. Maximum magnetic energy scales with convective energy
- 4. No fundamental difference between partial and full convection

Open questions:

- Where is the small-scale field?
- Are there different dynamo modes?
- On what timescale do fields vary? Cycles, field reversals, etc.
- How good of an example is the Sun for other stars?
- etc., etc., etc., ...