Studies of rapidly-rotating convection driven dynamos with low Pm

ANDREY SHEYKO¹, CHRISTOPHER FINLAY ², PHILIPPE MARTI³ & ANDREW JACKSON⁴

¹ Earth and Planetary Magnetism group, Institute of Geophysics, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland

(andrey.sheyko@erdw.ethz.ch)

² National Space Institute, Technical University of Denmark, Copenhagen, Denmark

(cfinlay@space.dtu.dk)

³ Department of Applied Mathematics, University of Colorado, Boulder, USA

(Philippe.Marti@colorado.edu)

⁴ Earth and Planetary Magnetism group, Institute of Geophysics, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland

(ajackson@ethz.ch)

We study a set of numerical dynamo models varying the convection strength by a factor of 30 and ratio of magnetic to viscous diffusivities by a factor of 20 at rapid rotation rates ($E = \nu/(2\Omega d^2) = 10^{-6}$) using a heat flux outer BC. This regime has been little explored (aside from a pioneering study by Sakuraba & Roberts) due to the significant computing resources required. Our simulations are carried out using a discretisation of degree and order 256 in spherical harmonics, and 516 finite difference points in radius and parallelized on 516 processors. We report energy spectra of steady solutions, a comparison of volume-integrated characteristics of fields with the proposed rotating convection and dynamo scaling laws, a structure of dynamos deep in the shell and on the CMB in relation to the selection of control parameters.