

Introduction to self-excited dynamo action

M.R.E.PROCTOR

DAMTP, University of Cambridge

Mathematical Aspects of Natural Dynamos, Caramulo, September 2003

• Faraday's Law and the Induction Equation

Boundary conditions The magnetic Reynolds number. Reduction for two-dimensional and axisymmetric cases Maxwell's equations. Faraday's Law of induction. Ohm's Law and reduction to induction equation.

Simple dynamos

the Stretch-Twist-Fold mechanism. Singular character of perfectly conducting case. Fast and slow dynamos Mechanical generators and Faraday disc dynamo. Importance of chirality and geometric complexity. Difficulty of homogeneous dynamos. Dynamos as a high Rm phenomenon. Field line stretching:

Anti-dynamo theorems

Non-normality of induction equation. Bounds on flow velocity: Childress, Backus, Busse Dissipation bound. Geometrical results: Cowling's theorem, toroidal theorem, Zel'dovich's theorem. Definitions of dynamo action in finite or periodic conducting domains. Decay of fields in stationary media.

Steady and time-dependent velocities

'Pulsed' flows: dynamos with almost-always two-dimensional flows. Influence of time dependence in enhancing stretching. Two-dimensional unsteady flows acting as fast dynamos.

Two-scale dynamos

symmetry. Approximation methods for α ; difficulties at large values of small-scale Rm. α^2 - and $\alpha\omega$ -dynamos. Applications to solar and planetary dynamos. Parker's 'cyclonic event' model. Mean-field electrodynamics and the α -effect. Importance of broken mirror-

0. Faraday's Law and the Induction Equation

Basis of dynamo action is Faraday's Law for e.m.f. in a circuit due to flux change. Neglecting displacement current we have

$$\frac{\partial \mathbf{B}}{\partial t} = -\mathbf{\nabla} \wedge \mathbf{E}; \quad \mathbf{\nabla} \cdot \mathbf{B} = 0; \quad \mathbf{\nabla} \wedge \mathbf{B} = \mu_0 \mathbf{j}$$

 $\mathbf{j} = \sigma \mathbf{E}' = \sigma (\mathbf{E} + \mathbf{u} \wedge \mathbf{B})$. Simplifying, obtain the Induction Equation To close system have Ohm's Law relating \mathbf{E}' (comoving electric field) and \mathbf{j} :

$$\frac{\partial \mathbf{B}}{\partial t} = \mathbf{\nabla} \wedge (\mathbf{u} \wedge \mathbf{B})[\text{Advection}] - \mathbf{\nabla} \wedge (\eta \mathbf{\nabla} \wedge \mathbf{B})[\text{Diffusion}]; \quad \eta = (\mu_0 \sigma)^{-1}$$

Note that here η (magnetic diffusivity) assumed isotropic (and often uniform too). effect etc.) Note also formal similarity to vorticity equation. OK for fluids – unlike wires! In some cases Ohm's Law may be too simple (Hall

- Balance between advection and diffusion provided by Magnetic Reynolds number $Rm = \mathcal{UL}/\eta$ where \mathcal{U} , \mathcal{L} are velocity and length scales (cf. Reynolds number)
- ullet Nondimensionalizing $oldsymbol{u}$ with $\mathcal{U},\,t$ with \mathcal{L}/\mathcal{U} get dimensionless I.E.:

$$\frac{\partial \mathbf{B}}{\partial t} = \mathbf{\nabla} \wedge (\mathbf{u} \wedge \mathbf{B}) - \mathrm{Rm}^{-1} \mathbf{\nabla} \wedge (\mathbf{\nabla} \wedge \mathbf{B})$$

If **u**, **B** are axisymmetric can write in polars (s, ϕ, z) ;

$$\mathbf{B} = B\mathbf{e}_{\phi} + \mathbf{\nabla} \wedge (A\mathbf{e}_{\phi}) = B\mathbf{e}_{\phi} + \mathbf{B}_{p}, \ \mathbf{u} = \mathbf{u}_{p} + U\mathbf{e}_{\phi}; \text{ then get}$$

$$\frac{\partial A}{\partial t} + s^{-1}\mathbf{u}_p \cdot \nabla(sA) = \operatorname{Rm}^{-1}(\Delta - s^{-2})A$$

$$\frac{\partial B}{\partial t} + s\mathbf{u}_p \cdot \nabla(B/s) = s\mathbf{B}_p \cdot \nabla(U/s) + \operatorname{Rm}^{-1}(\Delta - s^{-2})B$$

For two-dimensional case write $\mathbf{B} = B\mathbf{e}_z + \nabla \wedge (A\mathbf{e}_z)$; get

$$(\partial_t + \mathbf{u}_p \cdot \nabla)A = \operatorname{Rm}^{-1}\Delta A; \ (\partial_t + \mathbf{u}_p \cdot \nabla)B = \mathbf{B}_p \cdot \nabla(\mathbf{u}_z) + \operatorname{Rm}^{-1}\Delta B$$

1. Simple Dynamos

What is a dynamo? Essentially a mechanism for turning mechanical energy into magnetic energy.

o Will only consider Kinematic dynamo: neglect Lorentz force; **u** is prescribed.

• Mechanical example: Faraday (segmented) dynamo (Moffatt 1979).

velocity Ω and fluxes Φ_I , Φ_J . Get o Simple equations relate current in the wire I, current round disc J, angular

$$\Phi_I = LI + MJ, \quad \Phi_J = MI + L'J, \quad RI = \Omega \Phi_J - \frac{d\Phi_I}{dt}; \quad R'J = -\frac{d\Phi_J}{dt}$$

Seek solutions $\propto e^{pt}$. Growth if $\omega M > R$. Growthrate is

$$p_{+} = \left(\sqrt{(RL' + R'L)^2 + 4R'(\Omega M - R)(LL' - M^2)} - (RL' + R'L)\right)/2(LL' - M^2).$$

and not exclusively by advection. This is an example of a slow dynamo (see later). $p_+ > 0$ for all $\Omega > R/M$ but $p \sim \sqrt{\Omega R'}$ as $\Omega \to \infty$. Thus growthrate is controlled by diffusion

- The Faraday dynamo is **untypical** of fluid dynamos!
- o Current travels in wires: anisotropic, inhomogeneous conductivity!
- o System lacks mirror-symmetry: cf. e.g. Earth, with symmetry under reflection and exchange
- How can a homogeneous fluid act as a dynamo? Best understood in case of large Rm, when field lines growth of energy, e.g. Vainshtein-Zel'dovich dynamo (Stretch-Twist-Fold): almost frozen into fluid (Alfvén's Theorem, cf. Kelvin's Theorem for vorticity). Magnetic energy then enhanced by stretching (advection) repeated stretching and folding can lead to exponential

• STF and other mechanisms suggest possibility of growth of magnetic energy at a some folding must occur; in \mathbb{R}^2 there is always too much folding, so all fields depends on amount of stretching (good) to folding (bad). In a bounded domain, rate independent of diffusion - a fast dynamo. Role of small diffusion is complex; ultimately decay.

• Consider simple 2D example: flow field $\mathbf{u} = (-x, 0, z)$, $\mathbf{B} = (0, 0, B(x, t))$. obeys $B - xB_x = B + \text{Rm}^{-1}B_{xx}$. If $B(x, 0) = \text{Re}(\beta_0 e^{ik_0 x})$ then

$$B(x,t) = \text{Re}(\beta_0 e^{t-k_0^2(e^{2t}-1)/2\text{Rm}} e^{ik_0 e^t x})$$

dients. But transient growth of energy can occur for long times $\sim \ln(\text{Rm}/k_0^2)$. As $Rm \rightarrow \infty$ energy can increase indefinitely. so |B| eventually decays superexponentially due to exponentially increasing gra-

- ullet Fast ${
 m and\ slow\ dynamos}$. In astrophysical applications need to understand behaviour rate indept. of η ? of rate of growth of field at large Rm. Can energy/flux/dipole moment grow at a
- Slow dynamo. Growthrates (on advective timescale) $\rightarrow 0$ as Rm $\rightarrow \infty$.
- zero at large Rm. In this case field appears on all scales as Rm $\rightarrow \infty$. Diffusion can never be neglected. This is necessary to get round flux conservation as diffusion becomes negligible Fast dynamo. Growthrates (or at least \lim_{sup} if many modes) do not tend to

2. "Anti-Dynamo Theorems"

ullet Statement of the dynamo problem. (i) Suppose **B** is defined in a finite volume \mathcal{D} , surrounded (in case (i) suppose that $\mathbf{u} = 0$ on $\partial \mathcal{D}$. Then define magnetic energy $\mathcal{M} = \frac{1}{2} \int |\mathbf{B}|^2 d\mathbf{x}$; integral over time-bounded norm (e.g. $\mathsf{U} \equiv \max_{\mathcal{D}}(|\mathbf{u}|)$, $\mathsf{S} \equiv \max_{\mathcal{D},i}(|\partial_j u_i|)$, $\mathsf{E}^{\frac{1}{2}} \equiv (\int_{\mathcal{D}} |\nabla \mathbf{u}|^2 d\mathbf{x})^{\frac{1}{2}}$,..., etc.) In defined in a periodic domain $\mathcal{D} \in \mathbb{R}^3$, with $\int_{\mathcal{D}} \mathbf{B} d\mathbf{x} = 0$. In each case **u** satisfies $\nabla \cdot \mathbf{u} = 0$, has $^{c}\mathcal{D}$) by an insulator (this could be generalised so that $^{c}\mathcal{D}$ is a stationary conductor). In $^{c}\mathcal{D}$ we have as $t \to \infty$. Then in case (i) \mathbb{R}^3 in case (i), over \mathcal{D} in case (ii). We say that we have dynamo action if \mathcal{M} does not tend to zero $\nabla \wedge \mathbf{B} = 0$, with all components of \mathbf{B} continuous at $\partial \mathcal{D}$; $|\mathbf{B}| \sim \mathcal{O}(|\mathbf{x}|^{-3})$ as $|\mathbf{x}| \to \infty$. (ii) \mathbf{B} is

$$\frac{d\mathcal{M}}{dt} = \mathcal{P} - \eta \mathcal{J}$$

$$= \int_{\mathcal{D}} \mathbf{B} \cdot (\mathbf{B} \cdot \nabla \mathbf{u}) d\mathbf{x} - \eta \int_{\mathcal{D}} |\nabla \wedge \mathbf{B}|^2 d\mathbf{x} = \int_{\mathcal{D}} (\mathbf{u} \wedge \mathbf{B}) \cdot (\nabla \wedge \mathbf{B}) d\mathbf{x} - \eta \int_{\mathbb{R}^3} |\nabla \mathbf{B}|^2 d\mathbf{x}$$

(for case (ii), all integrals are over \mathcal{D}).

ullet Necessary conditions for dynamo action. Need the induction term to be larger than dissipation term. Use Poincaré Inequality $\mathcal{F} \equiv \mathcal{J}/(2\mathcal{M}) \geq c^{-2}$; $c \propto (\int_{\mathcal{D}} d\mathbf{x})^{\frac{1}{3}}$. (For sphere, radius $a, c = a/\pi$; periodic cube, side $a, c = a/2\pi$). Have bounds on

(a)
$$\mathcal{P} \leq \mathsf{U} \int_{\mathcal{D}} |\mathbf{B} \cdot \nabla \mathbf{B}| d\mathbf{x} \leq \mathsf{U}(2\mathcal{M})^{\frac{1}{2}} \mathcal{J}^{\frac{1}{2}}$$
 [Childress]

(b)
$$\mathcal{P} \leq \mathbf{S} \cdot 2\mathcal{M}$$
 [Backus]

(c)
$$\mathcal{P} \leq \mathsf{E}^{\frac{1}{2}} \left(\int_{\mathcal{D}} |\mathbf{B}|^4 d\mathbf{x} \right)^{\frac{1}{2}}$$
 [Proctor]

get three bounds on the growthrate: Thus (using for (c) the inequality $\int_{\mathcal{D}} |\mathbf{B}|^4 d\mathbf{x} \leq c_1^2 \cdot (2\mathcal{M})^{\frac{1}{2}} \cdot \mathcal{J}^{\frac{3}{2}}$ with $c_1 \in \mathbb{R}$), we

(a)
$$(2\mathcal{M})^{-1}\frac{\partial \mathcal{M}}{\partial t} \le U\mathcal{F}^{\frac{1}{2}} - \eta\mathcal{F} \le \mathcal{F}^{\frac{1}{2}}(U - \eta c^{-1})$$

(b)
$$(2\mathcal{M})^{-1} \frac{\partial \mathcal{M}}{\partial t} \le \mathsf{S} - \eta \mathcal{F} \le \mathsf{S} - \eta c^{-2}$$

(c)
$$(2\mathcal{M})^{-1}\frac{\partial \mathcal{M}}{\partial t} \le c_1 \mathsf{E}^{\frac{1}{2}}\mathcal{F}^{\frac{3}{4}} - \eta \mathcal{F} \le \mathcal{F}^{\frac{3}{4}}(c_1 \mathsf{E}^{\frac{1}{2}} - \eta c^{-\frac{1}{2}})$$

 $\mathbf{u} \cdot \mathbf{n} = 0$ on $\partial \mathcal{D}$). Can also get bounds on growthrate $s \equiv 2\mathcal{M}^{-1} d\mathcal{M}/dt$ So if $\mathcal{M} \not\to 0$ must have $U > \eta/c$, $S > \eta/c^2$, $E > \eta^2/cc_1^2$. (For (a) only need

(a)
$$s \le \max[(\mathsf{U}/c - \eta/c^2), \mathsf{U}^2/4\eta];$$
 (c) $s \le \max[(c_1 \mathsf{E}^{\frac{1}{2}} c^{-\frac{3}{2}} - \eta c^{-2}), 27c_1^4 \mathsf{E}^2/256\eta^3]$

of \mathcal{M} even though there are no unstable eigenfunctions eigenvectors not orthogonal. When inequalities violated, can get transient growth gives Euler-Lagrange equation different from I.E. This is because I.E. is non-normal; if inequalities violated. Even optimal condition $\eta < \max \int_{\mathcal{D}} \mathbf{B} \cdot (\mathbf{B} \cdot \nabla \mathbf{u}) d\mathbf{x} / \mathcal{J}$ o N.B. These are only necessary conditions! Dynamo action not guaranteed even

- A non-necessary condition! There is no lower bound on the energy $\int_{\mathcal{D}} |\mathbf{u}|^2 d\mathbf{x}$ for a $\sim |\mathbf{u}|^2 \times R^3 \sim R$. Argument can be extended to external insulator. conductor. For steady dynamo I.E. invariant under $\mathbf{x} \to \mathbf{x}/R$, $\mathbf{u} \to R\mathbf{u}$, energy working dynamo. Consider velocity **u** in sphere radius R surrounded by stationary
- ullet Geometrical constraints. These are of two kinds: (i) constraints on the flow; (ii) constraints on the field
- o (i) Flow constraints. Consider case(a) above. Define $P = \mathbf{B} \cdot \mathbf{r}$, $Q = \mathbf{u} \cdot \mathbf{r}$.

$$\frac{\partial P}{\partial t} + \mathbf{u} \cdot \nabla P = \mathbf{B} \cdot \nabla Q + \eta \Delta P \text{ in } \mathcal{D}$$

 $\mathbf{u} = \mathbf{u}_{tor} + \mathbf{u}_{pol} \equiv \nabla \wedge (T\mathbf{r}) + \nabla \wedge \nabla \wedge (S\mathbf{r})$. It follows that $Q = -\mathcal{L}^2 S$, where $-\mathcal{L}^2$ is the angular momentum operator. with $\Delta P = 0$ in ${}^{c}\mathcal{D}$, and $P, \partial P/\partial r$ continuous on $\partial \mathcal{D}$. If $\nabla \cdot \mathbf{u} = 0$ we can write

Thus if **u** is toroidal ($\mathbf{u}_{pol} = 0$) then Q = 0 and vice versa. In this case we have

$$\frac{1}{2}\frac{\partial}{\partial t} \int_{\mathcal{D}} P^2 d\mathbf{x} = -\eta \int_{\mathbb{R}^3} |\nabla P|^2 d\mathbf{x} < -\eta c^{-2} \int_{\mathcal{D}} P^2 d\mathbf{x} \implies |P| \to 0.$$

then $\partial B_z/\partial t + \mathbf{u} \cdot \nabla B_z = \mathbf{B} \cdot \nabla u_z + \eta \Delta B_z$, etc. [Zel'dovich]. cannot act as a dynamo. A similar result holds in cartesian coords when $\mathbf{u} \cdot \mathbf{z} = 0$: $\int_{\mathcal{D}} T^2 d\mathbf{x} \to 0$ also. This is the toroidal theorem, that a toroidal velocity field After integrating get $\partial T/\partial t + \mathbf{u} \cdot \nabla T = \eta \Delta T$, with T = 0 on $\partial \mathcal{D}$; then can show Neglecting P, now have both \mathbf{u} , \mathbf{B} toroidal, and $\nabla \wedge (\mathbf{u} \wedge \mathbf{B}_{tor}) = \nabla \wedge (-\mathbf{r}(\mathbf{u} \cdot \nabla T))$.

 When flow has poloidal parts dynamo action cannot be excluded generally. Can bound poloidal field/total field ratio [Busse]. Poloidal energy equation

$$\frac{1}{2}\frac{\partial}{\partial t} \int_{\mathcal{D}} P^{2} d\mathbf{x} = -\int_{\mathcal{D}} Q\mathbf{B} \cdot \nabla P d\mathbf{x} - \eta \int_{\mathbb{R}^{3}} |\nabla P|^{2} d\mathbf{x}$$

$$\leq \max_{\mathcal{D}} Q \left(2\mathcal{M} \cdot 2 \int_{\mathbb{R}^{3}} |\mathbf{B}_{pol}|^{2} d\mathbf{x} \right)^{\frac{1}{2}} - 2\eta \int_{\mathbb{R}^{3}} |\mathbf{B}_{pol}|^{2} d\mathbf{x}$$

Thus we have

$$\max_{\mathcal{D}} Q \geq \eta \left(rac{\int_{\mathbb{R}^3} |\mathbf{B}_{pol}|^2 \, d\mathbf{x}}{\mathcal{M}}
ight)^{rac{1}{2}}$$

- Can use continuity arguments for eigenspectrum to show that in fact for any given \mathbf{u}_{tor} , no dynamo action unless $\max_{\mathcal{D}} Q/\eta$ sufficiently large.
- Can also show [Proctor] that

$$\int_{\mathcal{D}} |\mathbf{\nabla} \wedge \mathbf{u}_{pol}|^2 d\mathbf{x} \geq \frac{\eta^2}{c_2} \left(\frac{\int_{\mathbb{R}^3} |\mathbf{B}_{pol}|^2 d\mathbf{x}}{\int_{\mathcal{D}} |\mathbf{\nabla} \wedge \mathbf{B}|^2 d\mathbf{x}} \right), \quad c_2 \propto \int_{\mathcal{D}} d\mathbf{x}$$

Dynamos can be found when \mathbf{u} is purely poloidal (e.g. Gailitis ring dynamo).

• Constraints on the field. The main theorem is Cowling's Theorem: An axisymmet**u** but NOT vice versa. There are several proofs of this in various cases. ric magnetic field cannot be a dynamo. Note that if **B** is axisymmetric then so is

Braginskii's proof: $\nabla \cdot \mathbf{u} = 0$. Write $\mathbf{B} = \nabla \wedge (\chi \mathbf{e}_{\phi}/s) + s\psi \mathbf{e}_{\phi}$, $U = s\Omega$, then

$$\frac{\partial \chi}{\partial t} + \mathbf{u}_p \cdot \nabla \chi = \eta (\Delta - \frac{2}{s} \frac{\partial}{\partial s}) \chi$$
$$\frac{\partial \psi}{\partial t} + \mathbf{u}_p \cdot \nabla \psi = \mathbf{B}_p \cdot \nabla \Omega + \eta (\Delta + \frac{2}{s} \frac{\partial}{\partial s}) \psi$$

poloidal energy equation with $(\Delta - (2/s)\partial/\partial s)\chi = \psi = 0 \in {}^{c}\mathcal{D}$ and $\chi \sim \mathcal{O}(|\mathbf{x}|^{-1})$ as $|\mathbf{x}| \to \infty$. Forming

$$\frac{1}{2}\frac{d}{dt}\int_{\mathcal{D}}\chi^2 d\mathbf{x} = \eta \int_{\mathcal{D}}\chi \left(\Delta - \frac{2}{s}\frac{\partial}{\partial s}\right)\chi d\mathbf{x} = -\eta \int_{\mathbb{R}^3} |\nabla \chi|^2 d\mathbf{x} \leq -\eta c_3^2 \int_{\mathcal{D}}\chi^2 d\mathbf{x},$$

so $|\mathbf{B}_p| \to 0$ (exponentially). When χ is negligible, can show similarly that

$$\frac{1}{2}\frac{d}{dt}\int_{\mathcal{D}}\psi^{2}d\mathbf{x} = \eta\int_{\mathcal{D}}\psi\left(\Delta + \frac{2}{s}\frac{\partial}{\partial s}\right)\psi d\mathbf{x} = -\eta\int_{\mathcal{D}}|\nabla\psi|^{2}d\mathbf{x}$$

Similar results hold for flows independent of z.

- More general conditions. For variable compressibility, non-uniform η , etc no really that if $\Delta \chi(\mathbf{X}) = 0$ for all time then χ becomes non-differentiable near \mathbf{X} and so $\Delta \chi \leq 0$. So growing dynamo impossible. Can then be argued [Hide & Palmer] as $|\mathbf{x}| \to \infty$, must exist a positive maximum of χ , at $\mathbf{X}(t)$ where $\nabla \chi = 0$, useful results are known. Equation for χ still holds: since $\chi(0,z)=0$ and $\chi\to 0$ $\mathbf{B}_p \to 0$ (hard to rigorize).
- C_{ε} , radius ε around **X**, with $B_{\varepsilon} \equiv \oint_{C_{\varepsilon}} |\mathbf{B}_p| \cdot d\mathbf{x} / 2\pi\varepsilon$, Steady dynamo not possible since for small meridional circle S_{ε} , boundary

$$(\max_{\mathcal{D}} |\mathbf{u}|) B_{\mathcal{E}} S_{\mathcal{E}} \ge \int_{S_{\mathcal{E}}} (\mathbf{u}_p \wedge \mathbf{B}_p) \cdot d\mathbf{x} = \int_{S_{\mathcal{E}}} \eta(\mathbf{x}) \nabla \wedge \mathbf{B}_p \cdot d\mathbf{x} \sim 2\pi \varepsilon B_{\mathcal{E}} \eta(\mathbf{X})$$

which is impossible as $\varepsilon \to 0$.

and toroidal fields tend to zero exponentially, but rate not well bounded Further use of maximum principles [Ivers & James] shows that both poloidal

3. Steady and Time-dependent Velocities

Smooth, steady **u** not usually efficient as dynamos at large Rm; not enough stretchponential stretching of material lines). Time-dependent flows can stretch much ing. Smooth axisymmetric or 2D flows cannot be fast dynamos if steady (no exflow, Galloway-Proctor flow better, even if Eulerian form very simple. As example consider [G.O.] Roberts

Roberts flow:
$$\mathbf{u}(x,y) \propto \mathbf{\nabla} \wedge (\psi(x,y)\mathbf{e}_z) + \gamma \psi(x,y);$$

$$\psi = \sin x \sin y.$$

$$\mathbf{GP}\text{-flow:} \quad \mathbf{u}(x,y,t) \propto \mathbf{\nabla} \wedge (\psi(x,y,t)\mathbf{e}_z) + \gamma \psi(x,y,t);$$

$$\psi = \sin(y + \varepsilon \sin \omega t) + \cos(x + \varepsilon \cos \omega t)$$

GP-flow has stretching almost everywhere. Roberts flow has fixed cellular pattern; no stretching except at cell corners.

dynamo!! For GP-flow growthrate is $\mathcal{O}(1)$ for large Rm, optimum wavenumber also $\mathcal{O}(1)$. Here flow is chaotic, and though there are thin flux structures chaotic points. As Rm $\to \infty$ optimum growthrate $\sim \mathcal{O}(\ln(\ln \text{Rm})/\ln \text{Rm})$. Just a slow these scales are long cf. the thin boundary layer scale $Rm^{-\frac{1}{2}}$ for field near stagnation timum growthrate occurs at large k for Rm $\gg 1~(k \sim (\text{Rm}^{\frac{1}{2}}/\ln\text{Rm}))$ (N.B. this regions near the stagnation points do not scale with Rm. Both flows have fields of form $\mathbf{B} = Re(\mathbf{B}(x,y,t)e^{ikx})$ For Roberts flow op-

Finite time Liapunov exponents

Field structures for non-diffusive evolution

Remark: Toroidal and 2D theorems can be got round for time-dependent flows, because of non-normality. Consider the pulsed Beltrami flow

$$\mathbf{u} = (0, \sin x, \cos x) \quad (0 \le t \le \tau)$$
$$= (\sin y, 0, \cos y) \quad (\tau \le t \le 2\tau)$$

Have for $(0 \le t \le \tau)$ with $\eta = 0$, and $\overline{\mathbf{B}} = Re(\tilde{\mathbf{B}}_H exp(ikz))$ This is planar flow for almost all time! But for each interval get transient growth!

$$\overline{\mathbf{B}}_{H}(\tau) = J_{0}(k\tau)\overline{\mathbf{B}}_{H}(0) - i\tau J_{1}(k\tau)\overline{B_{x}}(0)\mathbf{e}_{y}$$

refold the field and give further growth. which can be large for large τ , even for small diffusion. Then the second pulse can

4. Two-scale Dynamos

scale 'cyclonic events' act on uniform field. If velocity has helicity $(\mathbf{u} \cdot \nabla \wedge \mathbf{u} \neq 0)$ then emf generated scale dynamos. Magnetic field has some scales comparable to that of **u**. But if **B** exists on two distinct scales then dynamo action can be easily verified. Simplest model [Parker]; suppose small extra term $\nabla \wedge \alpha \mathbf{B}$, (the α -effect) in the I.E.: Roberts, GP and pulsed dynamos (and extensions to 3D flows such as the ABC model) are small (anti-)parallel to field. Sign of α opposite to helicity?? (only true for short-lived events) Thus get

Modelling large -scale field as axisymmetric, get model system Parker supposed (for solar field) that toroidal field >> poloidal field due to strong zonal shears.

$$\frac{\partial A}{\partial t} + s^{-1} \mathbf{u}_p \cdot \nabla(sA) = \alpha B + \operatorname{Rm}^{-1}(\Delta - s^{-2})A$$

$$\frac{\partial B}{\partial t} + s \mathbf{u}_p \cdot \nabla(B/s) = \left[\nabla \wedge (\alpha \nabla \wedge \mathbf{B}_p)\right] + s \mathbf{B}_p \cdot \nabla(U/s) + \operatorname{Rm}^{-1}(\Delta - s^{-2})B$$

More general approach. Define some average (denoted by $\overline{\cdots}$) and write $\mathbf{B} = \overline{\mathbf{B}} + \mathbf{B}'$, $\mathbf{u} = \overline{\mathbf{u}} + \mathbf{u}'$, etc. Then, taking the average,

$$\frac{\partial \mathbf{B}}{\partial t} = \mathbf{\nabla} \wedge \mathcal{E} + \mathbf{\nabla} \wedge (\overline{\mathbf{u}} \wedge \overline{\mathbf{B}}) - \mathbf{\nabla} \wedge (\eta \mathbf{\nabla} \wedge \overline{\mathbf{B}})$$

where $\mathcal{E} \equiv \mathbf{u}' \wedge \mathbf{B}'$. Equation for \mathbf{B}' is

$$\frac{\partial \mathbf{B}'}{\partial t} = \mathbf{\nabla} \wedge (\overline{\mathbf{u}} \wedge \mathbf{B}') + \mathbf{\nabla} \wedge (\mathbf{u}' \wedge \overline{\mathbf{B}})$$
$$+ \mathbf{\nabla} \wedge (\mathbf{u}' \wedge \mathbf{B}' - \overline{\mathbf{u}' \wedge \mathbf{B}'}) - \mathbf{\nabla} \wedge (\eta \mathbf{\nabla} \wedge \mathbf{B}')$$

What is \mathcal{E} ? Clearly \mathcal{E} (for fixed \mathbf{u}) is a linear functional of $\overline{\mathbf{B}}$. Assuming a local relation, get

$${\cal E}_i = lpha_{ij} \overline{B}_j - eta_{ijk} rac{\partial \overline{B}_k}{\partial x_j} + \dots$$

isotropic, then $\alpha_{ij} = \alpha \delta_{ij}$. α can be related to helicity. Similarly $\beta_{ijk} = \beta eps_{ijk}$; "turbulent magnetic diffusivity" Anti-symmetric part acts like a velocity – only non-zero if no isotropy or homogeneity. If suppose o α_{ij} is a pseudo-tensor; symmetric part is non-zero only if statistics of **u** lack mirror-symmetry.

If $\overline{\mathbf{u}} = 0$ can see that α leads to dynamo action. Consider (with $\eta + \beta \to \eta$)

$$\frac{\partial \overline{\mathbf{B}}}{\partial t} = \mathbf{\nabla} \wedge (\alpha \overline{\mathbf{B}}) - \mathbf{\nabla} \wedge (\eta \mathbf{\nabla} \wedge \overline{\mathbf{B}})$$

for all suff.small kIf α, β uniform, get solutions of form $Re(\hat{\mathbf{B}}\exp(i\mathbf{k}\cdot\mathbf{x}+pt))$, with $(p+\eta k^2)^2=\alpha^2k^2$, so $p_+>0$

 α tensor will take more general forms with lower symmetry of flow statistics. In a sphere, when there are two preferred directions, namely the rotation Ω and the radial vector ${f r}$ get more general

$$\mathcal{E} = \alpha_1 (\mathbf{\Omega} \cdot \mathbf{r}) \overline{\mathbf{B}} + \alpha_2 \mathbf{r} (\mathbf{\Omega} \cdot \overline{\mathbf{B}}) + \alpha_3 \mathbf{\Omega} (\mathbf{r} \cdot \overline{\mathbf{B}}) + \dots$$

Note that both rotation and preferred direction would seem necessary for an α -effect.

• Calculation of α . This is difficult!! Two approaches:

with **B** uniform. For fourier mode with wavenumber **k** have $B'_i = iB_j k_j u'_i/\eta k^2$ so • small Rm at scale of \mathbf{u}' . To calculate alpha approximate \mathbf{B}' equation by $0 = \overline{\mathbf{B}} \cdot \nabla \mathbf{u}' + \eta \Delta \mathbf{B}'$.

$$\mathcal{E}_i = \alpha_{ij} \overline{B}_j = i \varepsilon_{ipq} k_j \overline{u_p'^* u_q'} \ \overline{B}_j / \eta k^2$$

Giving $\alpha \propto i \varepsilon_{ijk} k_j u_i^{\prime *} u_k^{\prime}$ (helicity) in isotropic case.

 $\partial_t \mathbf{B}' \approx \overline{\mathbf{B}} \cdot \nabla \mathbf{u}'$. If correlation time is τ_c then $B'_i \approx \tau_c \mathbf{B} \cdot \nabla \mathbf{u}'$, so in isotropic case \circ 'Short-sudden' approximation. Assume short correlation times for \mathbf{u}' , ignore diffusion. Then

$$\alpha = -\frac{\tau_c}{3} \, \overline{\mathbf{u}' \cdot \mathbf{\nabla} \wedge \mathbf{u}'}$$

- General results are difficult in intermediate case.
- An exact result. If we suppose fields and flow statistically steady with uniform imposed field $\overline{\mathbf{B}}$ (and periodic b.c.'s for simplicity), write $\mathbf{B}' = \mathbf{\nabla} \wedge \mathbf{A}'$; then have

$$\frac{\partial \mathbf{A}'}{\partial t} = -\nabla \Phi + \overline{\mathbf{u}} \wedge \mathbf{B}' + \mathbf{u}' \wedge \overline{\mathbf{B}}$$
$$+ \mathbf{u}' \wedge \mathbf{B}' - \overline{\mathbf{u}' \wedge \mathbf{B}'} - \eta \nabla \wedge \mathbf{B}'$$

so (ignoring boundary terms from integration by parts)

$$0 = \frac{1}{2} \left(\overline{\mathbf{B}' \cdot \partial_t \mathbf{A}' + \mathbf{A}' \cdot \partial_t \mathbf{B}'} \right) = -\overline{\mathbf{B}} \cdot \mathcal{E} - \eta \overline{\mathbf{B}' \cdot \nabla} \wedge \overline{\mathbf{B}'}$$

True exactly if boundary terms are ignored. Thus in isotropic case

$$\alpha |\overline{\mathbf{B}}|^2 = -\eta \,\overline{\mathbf{B}}' \cdot \nabla \wedge \mathbf{B}'$$

greater amplification. 1+2a+b=0. b=0, a=1/2 is possible and plausible, but intermittent fields (b>0) demand large Rm, leading to a fast mean field dynamo, and $\mathbf{B}' \sim \eta^a \mathbf{B}$, and have filling factor $\sim \eta^b$, then This shows that diffusion must be included in any proper model of α . If α is indept. of η at

ullet Mean field models. With lpha-effect term Cowling's theorem does not apply (toroidal field can sustain equator, U even, so get two types of field structure. poloidal). So can investigate axisymmetric models. Physical considerations suggest α odd about

(i) Dipole: B odd, A even

(ii) Quadrupole; A odd, B even.

modes with α , **u**, and quadrupole(dipole) modes with α , $-\mathbf{u}$. There is a near symmetry, associated with the adjoint dynamo problem, between dipole(quadrupole)

• Most models are of two types: (i) α^2 , with U neglected; (ii) $\alpha\omega$, with α term in B equation simplified system. dynamo waves. Use cartesian geometry; let $A=A(x,t), B=B(x,t), \mathbf{B}_p \cdot \nabla U \sim \Omega A_x$. then get $\alpha\omega$ models usually give cyclic dynamos (complex growthrates). Can understand latter in terms of neglected, as in Parker model. α^2 models typically give steady dynamos (real growthrates) while

$$\frac{\partial A}{\partial t} = \alpha B + \eta \left(\frac{\partial^2 A}{\partial x^2} - K^2 A \right); \quad \frac{\partial B}{\partial t} = \omega \frac{\partial A}{\partial x} + \eta \left(\frac{\partial^2 B}{\partial x^2} - K^2 B \right)$$

 $c = -\alpha\omega/(2\eta(k^2 + K^2))$. Note definite sign of c. $\alpha\omega$ models used to give models of the solar cycle (butterfly diagram) by identifying large B with regions of sunspot eruption. This has travelling wave solutions with $A, B \propto \exp(ik(x-ct))$ when $\alpha\omega = \pm 2\eta^2(k^2+K^2)^2/k$,

