Astrophysical
Huida and

Mon-linear
I ynanics

Introduction to self-excited dynamo action

M.R.E.PROCTOR
DAMTP, Uniwversity of Cambridge

Mathematical Aspects of Natural Dynamos, Caramulo, September 2003



e Faraday’s Law and the Induction Equation

Maxwell’s equations. Faraday’s Law of induction. Ohm’s Law and reduction to induction equation.
The magnetic Reynolds number. Reduction for two-dimensional and axisymmetric cases.

Boundary conditions.

e Simple dynamos
Mechanical generators and Faraday disc dynamo. Importance of chirality and geometric complexity.
Difficulty of homogeneous dynamos.Dynamos as a high Rm phenomenon. Field line stretching:

the Stretch-Twist-Fold mechanism. Singular character of perfectly conducting case. Fast and slow dynamos.

Definitions of dynamo action in finite or periodic conducting domains. Decay of fields in stationary media.
Non-normality of induction equation. Bounds on flow velocity: Childress, Backus, Busse.

Dissipation bound. Geometrical results: Cowling’s theorem, toroidal theorem, Zel’dovich’s theorem.

e Steady and time-dependent velocities
Influence of time dependence in enhancing stretching. Two-dimensional unsteady flows acting as fast dynamos.

‘Pulsed’ flows: dynamos with almost-always two-dimensional flows.

e T'wo-scale dynamos
Parker’s ‘cyclonic event’ model. Mean-field electrodynamics and the a-effect. Importance of broken mirror-
symmetry. Approximation methods for «; difficulties at large values of small-scale Rm. o? and aw-dynamos.

Applications to solar and planetary dynamos.



0. Faraday’s Law and the Induction Equation

e Basis of dynamo action is Faraday’s Law for e.m.f. in a circuit due to flux change.
Neglecting displacement current we have
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o To close system have Ohm’s Law relating E' (comoving electric field) and j:

j = oE = o¢(E + u A B). Simplifying, obtain the Induction Equation

0B
o = V A (u A B)[Advection] — V A (nV A B)[Diffusion]; 7 = (uo)™"
e Note that here n (magnetic diffusivity) assumed isotropic (and often uniform too).

OK for fluids — unlike wires! In some cases Ohm’s Law may be too simple (Hall

effect etc.) Note also formal similarity to



e Balance between advection and diffusion provided by Magnetic Reynolds number

Rm = UL/n where U, L are velocity and length scales (cf. Reynolds number)

e Nondimensionalizing u with U, t with £/U get dimensionless [L.E.:
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e If u, B are can write in polars (s, ¢, 2);
B = Bey+ V A (Aey) = Bey + By, u = u, + Uey; then get
0A
e +su,- V(s4) =Rm (A - s%)A
0B 1 -
57 TS V(B/s)=sB,-V(U/s)+Rm (A —-s")B
e For write B = Be, + V A (Ae,); get

(0;+u,- V)A=Rm'AA; (6;+u,-V)B=B, -V(u,)+Rm'AB



1. Simple Dynamos

e What is a dynamo? Essentially a mechanism for turning mechanical energy into
magnetic energy.

o Will only consider Kinematic dynamo: neglect Lorentz force; u is prescribed.



e Mechanical example: Faraday (segmented) dynamo (Moffatt 1979).

J

21Tl

insulating
strips

o Simple equations relate current in the wire I, current round disc J, angular
velocity () and fluxes @7, @ ;. Get
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e Seek solutions o< ePt. Growth if wM > R. Growthrate is

py = T\SQ + R'LY? + 4R(QM — R)(LL' — M?) — (RL' + mév J2(LL — M?).

pye > 0forall Q > R/M but p ~ QR as Q) — oo. Thus growthrate is controlled by diffusion

and not exclusively by advection. This is an example of a, (see later).

e The Faraday dynamo is untypical of fluid dynamos!

o Current travels in wires: , inhomogeneous conductivity!
o System lacks . cf. e.g. Earth, with symmetry under reflection and exchange
of poles.

e How can a homogeneous fluid act as a dynamo? Best understood in case of large Rm, when field lines
almost frozen into fluid (Alfvén’s Theorem, cf. Kelvin’s Theorem for vorticity). Magnetic energy
then enhanced by stretching (advection) repeated stretching and folding can lead to exponential

growth of energy, e.g. Vainshtein-Zel’dovich dynamo (Stretch-Twist-Fold):



(b)

(d)

e STF and other mechanisms suggest possibility of growth of magnetic energy at a
rate independent of diffusion - a . Role of small diffusion is complex;
depends on amount of stretching to folding (bad). In a bounded domain,

some folding must occur; in R? there is always too much folding, so all fields

ultimately decay.



e Consider simple 2D example: flow field u = (—x,0,2), B = (0,0, B(x,t)). B
obeys B — 2B, = B+ Rm ' B,,. If B(z,0) = Re(Bye**) then

B(z,t) = Re(Bgel k(e ~1)/2Rmikoe'z)

so |B| eventually decays superexponentially due to exponentially increasing gra-

dients. But transient growth of energy can occur for ~ In(Rm/k3). As

Rm — oo energy can increase indefinitely.

e Fast and slow dynamos. In astrophysical applications need to understand behaviour
of rate of growth of field at large Rm. Can energy/flux/dipole moment grow at a
rate indept. of n?

o Slow dynamo. Growthrates (on advective timescale) — 0 as Rm — oo.

o Fast dynamo. Growthrates (or at least limg,, if many modes) do not tend to
zero at large Rm. In this case field appears as Rm — oo. Diffusion
can never be neglected. This is necessary to get round flux conservation as diffusion
becomes negligible.



2. “Anti-Dynamo Theorems”

e Statement of the dynamo problem. (i) Suppose B is defined in a finite volume D, surrounded (in
“D) by an insulator (this could be generalised so that “D is a stationary conductor). In “D we have
V A B = 0, with all components of B continuous at dD; |B| ~ O(|x|™?) as |x| = oo. (ii) B is
defined in a periodic domain D € R3, with %@ B dx = 0. In each case u satisfies V - u = 0, has

1
time-bounded norm (e.g. U = maxp(|ul), S = maxp ;(|0;u;]), Ez = ([, |Vul’dx)?,..., etc.) In
case (i) suppose that u = 0 on 9D. Then define magnetic energy M = 1 [ |B|? dx; integral over

R? in case (i), over D in case (ii). We say that we have dynamo action if M does not tend to zero

as t — 00. Then in case (i)
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(for case (ii), all integrals are over D).



e Necessary conditions for dynamo action. Need the induction term to be larger than
dissipation term. Use Poincar¢ Inequality F = J/(2M) > ¢7%; ¢ « ([, &wi.

(For sphere, radius a, ¢ = a/7; periodic cube, side a, ¢ = a/27). Have bounds on

P:

1

J? [Childress]

DN —

(a) P< C\ B - VB|dx < U(2M)
(b) P <S-2M [Backus]

1
3
(c) P < E2 \_w_&x [Proctor]
D

Thus (using for (c) the inequality [, |B|*dx < ¢f - (2M)2 - J? with ¢; € R), we
get three bounds on the growthrate:



@ MM upt - gE < AU e
(b) Aw.>\DL®%|.\W\N <S—nF<S—nc?
@ MM < elE - E < e - )

So if M 4 0 must have U > /¢, S > /¢’ E > n”/cci. (For (a) only need
u-n =0on dD). Can also get bounds on growthrate s = 2M~'dM /dt.
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(a) s < max|[(U/c—n/c*),U*/4n]; (c) s < max[(c;E2c 2—nc?),27ciE?/256n°]

o N.B. These are only necessary conditions! Dynamo action not guaranteed even
if inequalities violated. Even optimal condition 1 < max [, B - (B - Vu)dx/J
gives Euler-Lagrange equation different from I.E. This is because [.E. is W
eigenvectors not orthogonal. When inequalities violated, can get transient growth
of M even though there are no unstable eigenfunctions.



o There is no lower bound on the energy [ |ul*dx for a

working dynamo. Consider velocity u in sphere radius R surrounded by stationary

conductor. For steady dynamo I.E. invariant under x — x/R, u — Ru, energy

~ |u]* x R® ~ R. Argument can be extended to external insulator.

e Geometrical constraints. These are of two kinds: (i) constraints on the flow; (ii)

constraints on the field.

o (i) Flow constraints. Consider case(a) above. Define P=B-r, Q = u-r.

Then
OP .
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with AP = 0in “D, and P,0P/0r continuous on 0D. If V - u = 0 we can write
U=y + Uy =VA(Tr)+ VAV A(Sr). It follows that @ = —L%S, where

— L2 is the angular momentum operator.



Thus if u is toroidal (u,, = 0) then @) = 0 and vice versa. In this case we have

WW\ P?dx = |s\ |V P|*dx < él\ Pdx = |P|— 0.

20t Jp R3 D

Neglecting P, now have both u, B toroidal, and VA(uABy,.) = VA(—r(u-VT)).
After integrating get 0T /0t +u - VT = nAT, with T' = 0 on 9D; then can show
%@ T?dx — 0 also. This is the toroidal theorem, that a toroidal velocity field
cannot act as a dynamo. A similar result holds in cartesian coords when u -z = 0:

then 0B,/0t +u- VB, =B - Vu, + nAB,, etc. [Zel’dovich].

e When flow has poloidal parts dynamo action cannot be excluded generally. Can

bound poloidal field /total field ratio [Busse]. Poloidal energy equation
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Thus we have
1
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max () >
p v = M

e Can use continuity arguments for eigenspectrum to show that in fact for any given

W, N0 dynamo action unless maxp /7 sufficiently large.

e Can also show [Proctor| that

2 . |B , w&
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e Dynamos can be found when u is purely poloidal (e.g. Gailitis ring dynamo).



(a)

(b)

e Constraints on the field. The main theorem is Cowling’s Theorem: An axisymmet-
ric magnetic field cannot be a dynamo. Note that if B is axisymmetric then so is

u but NOT vice versa. There are several proofs of this in various cases.



o Braginskii’s proof: V-u = 0. Write B = V A (xey/s) + siey, U = s€2, then
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with (A — (2/5)0/0s)x = ¢ =0 € °D and x ~ O(|x|™!) as |x| = oo. Forming

poloidal energy equation

el dx = A—Z22) vdx = — Vo |2dx < — d
2t | X X s\@XA &mvxx \%L x| dx < 5\% X,

so |B,| = 0 (exponentially). When y is negligible, can show similarly that

2 0
w&\ﬁw&xl \@ AD.TW%V Ydx = Is\@_qﬂiw&x

Similar results hold for flows independent of z.



e More general conditions. For variable compressibility, non-uniform 7, etc no really
useful results are known. Equation for y still holds: since x(0,z) = 0 and xy — 0
as |x| — oo, must exist a positive maximum of y, at X(¢) where Vy = 0.
Ay < 0. So growing dynamo impossible. Can then be argued [Hide & Palmer]
that if Ax(X) = 0 for all time then y becomes non-differentiable near X and so
B, — 0 (hard to rigorize).

o Steady dynamo not possible since for small meridional circle Sg, boundary
Cg, radius € around X, with Be = %Qm IB,| - dx/2me,

AB%x i:_vmmr,wmw \ A:@>w@v.&NH \ ixv4>w@.&x7\wﬁmmmixv
Se Se

which is impossible as € — 0.

o Further use of maximum principles [Ivers & James| shows that both poloidal

and toroidal fields tend to zero exponentially, but rate not well bounded.



3. Steady and Time-dependent Velocities

e Smooth, steady u not usually efficient as dynamos at large Rm ; not enough stretch-
ing. Smooth axisymmetric or 2D flows cannot be fast dynamos if steady (no ex-
ponential stretching of material lines). Time-dependent flows can stretch much
better, even if Eulerian form very simple. As example consider [G.O.] Roberts

flow, Galloway-Proctor flow.

Roberts flow:  u(z,y) o« VA (W(z,y)e,) + v (z,y);
Y = sinxsin y.

u(z,y,t) < VA @(z,y,t)e:) + vo(z,y,t);

Y = sin(y + e sinwt) + cos(x + € cos wt)

o Roberts flow has fixed cellular pattern; no stretching except at cell corners.
GP-flow has stretching almost everywhere.



o Both flows have fields of form B = Re(B(z,y,t)e***) For Roberts flow op-
timum growthrate occurs at large k& for Rm > 1 (k ~ AWBW /InRm) (N.B. this

these scales are long cf. the thin boundary layer scale Rm™? for field near stagnation
points. As Rm — oo . Just a slow
dynamo!! For GP-flow

. Here flow is chaotic, and though there are thin flux structures chaotic

regions near the stagnation points do not scale with Rm.
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Finite time Liapunov exponents Field structures for non-diffusive evolution



e Remark:Toroidal and 2D theorems can be got round for time-dependent flows,

because of non-normality. Consider the pulsed Beltrami flow

I
IA

T)
27)

u =(0,sinz,cosx) (0

VAN
VAN

=(siny, 0,cosy) (T

This is planar flow for almost all time! But for each interval get transient growth!
Have for (0 < t < 7) with = 0, and B = Re(Byexp(ikz))

By(r) = Jo(kT)Bg(0) —irJi(kT)B,(0)e,

which can be large for large 7, even for small diffusion. Then the second pulse can
refold the field and give further growth.



4. Two-scale Dynamos

Roberts, GP and pulsed dynamos (and extensions to 3D flows such as the ABC model) are small
scale dynamos. Magnetic field has some scales comparable to that of u. But if B exists on two
distinct scales then dynamo action can be easily verified. Simplest model [Parker]; suppose small
scale ‘cyclonic events’ act on uniform field. If velocity has then emf generated
(anti-)parallel to field. Sign of o opposite to helicity?? (only true for short-lived events) Thus get
extra term V A aB, (the a-effect) in the LE.:

oe]]
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Parker supposed (for solar field) that toroidal field > poloidal field due to strong zonal shears.

Modelling large -scale field as axisymmetric, get model system

W|\M +s'u,- V(sA) =aB +Rm A -sA
0B ~1 —2
Ml_.mc@.ﬂﬁw\&”ﬁ4>34>wﬁz+mw@.QAQ\MV+WB (A—s%)B

e More general approach. Define some average (denoted by =+~) and write B=B+ B, u=u+u/,

etc. Then, taking the average,

w - P
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where £ = v/ A B'. Equation for B’ is

/
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+VAUWAB —uAB)-VA(NQVAB)



e What is £7 Clearly £ (for fixed u) is a linear functional of B. Assuming a local relation, get

- Qw\m
&= Q:m\. - Q:.» k

+ ...

o ayj is a pseudo-tensor; symmetric part is non-zero only if statistics of u lack mirror-symmetry.
Anti-symmetric part acts like a velocity — only non-zero if no isotropy or homogeneity. If suppose
isotropic, then a;; = ad;;. o can be related to helicity. Similarly B;;r = Bepsijr; “turbulent

magnetic diffusivity”.

e If @ = 0 can see that « leads to dynamo action. Consider (with n + 8 — n)

0B _ _
If o, B uniform, get solutions of form Re(B exp(ik - x + pt)), with , 80 py > 0

for all suff.small k.



e o tensor will take more general forms with lower symmetry of flow statistics. In a sphere, when
there are two preferred directions, namely the rotation €2 and the radial vector r get more general
form

E=01(2 1)B+ar(QB)+a3(r-B) +
Note that both rotation and preferred direction would seem necessary for an a-effect.

e Calculation of . This is difficult!! Two approaches:

o small Rm at scale of u’. To calculate alpha approximate B’ equation by 0 = B- Vu’' +nAB’.
\ n

with B uniform. For fourier mode with wavenumber k have B} = iB,k;u}/nk?* so

. — .. . — g ’ \\T\
i = i Bj = igipghjuug Bj/nk”

.. . \*\ .... .
Giving o o igjk;uu). (helicity) in isotropic case.

'Short-sudden’ approximation. Assume short correlation times for u’, ignore diffusion. Then

OB’ = B - VUu'. If correlation time is 7. then B! ~ 7.B - Vu/, so in isotropic case



e General results are difficult in intermediate case.

e An exact result. If we suppose fields and flow statistically steady with uniform imposed field B

(and periodic b.c.’s for simplicity), write B’ = V A A’; then have

OA’ —
®H|de+ﬂ>w\+=\>w

+uUAB —uAB —nVAB

so (ignoring boundary terms from integration by parts)

1 -
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True exactly if boundary terms are ignored. Thus in isotropic case

a/Bl*=-nB'-VAB

This shows that diffusion must be included in any proper model of a. If « is indept. of n at

large Rm, leading to a fast mean field dynamo, and B’ ~ n?B, and have filling factor ~ 7°, then
1+2a+b=0. b=0,a=1/2is possible and plausible, but intermittent fields (b > 0) demand

greater amplification.



e Mean field models. With a-effect term Cowling’s theorem does not apply (toroidal field can sustain

poloidal). So can investigate axisymmetric models. Physical considerations suggest a odd about

equator, U even, so get two types of field structure.
(i) Dipole: B odd, A even
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(ii) Quadrupole; A odd, B even.

b




There is a near symmetry, associated with the adjoint dynamo problem, between dipole(quadrupole)

modes with «, u, and quadrupole(dipole) modes with a, —u.

19
| dipole - Im(@)

family
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BB,

quadrupole
family

Im(£2) 501 Im(Q)




e Most models are of two types: (i) o? with U neglected; (ii) aw, with a term in B equation
neglected, as in Parker model. o? models typically give (real growthrates) while
aw models usually give cyclic dynamos (complex growthrates). Can understand latter in terms of
dynamo waves. Use cartesian geometry; let A = A(zx,t), B = B(z,t), B,- VU ~ QA,. then get

simplified system.

OB  0A 8B
oz KA BT Y

0A 0’ A
— =aB
5 ab +n

This has travelling wave solutions with A, B o< exp(ik(z — ct)) when aw = £2n*(k* + K?)?/k,
c = —aw/(2n(k* + K?)). Note definite sign of ¢. aw models used to give models of the solar cycle
(butterfly diagram) by identifying large B with regions of sunspot eruption.




