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® The hard man beneath the aimiable
exterior!




Macrodynamics
(the “Malkus-Proctor mechanism”)

J. Fluid Mech. (1975), vol. 67, part 3, pp. 417-443

Printed in Greal Britain

The macrodynamics of a-effect dynamos in
rotating fluids
By W.V.R. MALKUS AND M. R. E. PROCTORY

Department of Mathematics, Massachusetts Institute of Technology, Cambridge

Introduced the idea that large scale
induced velocity fields could provide
equilibration of mean field dynamo
models

dBJot =V x (Ux B)+V x (afB) + V2B,
E(0U[ot+U.VU)+Vp+2kxU =V x B x B+ EV2U,
V.B=V.U =0,




Remarks:

Scaling assumes Elsasser number O(1) - reasonable for
Earth E<<1 and Em <<1 so primary balance is
magnetostrophic

2k xU=-VP+B-VB
U(s,2p(s)) -n=U(s,2:(s)) - n=20

Setting E,Em =0 gives equations that require a solvability

condition - which determines the geostrophic flow V(s) :
Taylor’s condition ., )
T(s) :/ (B-VB)ydz=0
zp(8)
For E<<1 but nonzero equations have a
different character leading to a condition
of the form

EL[V](s) = T(s), a>0

N




Results and follow-ups:
As E = 0 does V— o or T(s)—0? And what is dependence on E?

Appears possible to find solutions where V=0(1) if linear problem
sufficiently supercritical. Further work by Soward & Jones, lerley and
Hollerbach confirms. But relations between Taylor type states and the
linear problem can be complicated.

Braginsky suggested that perhaps V~ 1/+E, T~+E. Now thought not
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Ficure 5. M as a function of a. A, case (ii) (E}, = 0-2,
E = 0-01); @, case (i) (E}, = 0-5, £ = 0-005).




Fast dynamos and the Galloway-
Proctor flow

Notion of fast dynamo introduced by

Zel’dovich - can a dynamo at high Rm grow

at a rate independent of diffusion? NATURE - VOL 356 - 23 APRIL 1992
Principal mechanism is field line stretching

at a rate that overcomes negative effects of Numerical calculations of fast
cancellation of oppositely directed flux. dynamos in smooth velocity
Clearly diffusion is essential if total flux is fields with realistic diffusion

to increase exponentially. D. 1. Galloway* & M. R. E. Proctor

Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, Silver Street, Cambridge CB3 9EW, UK

Many earlier "demonstrations’ of fast
dynamo action used maps to represent
flows - untypical. Numerical calculation of
dynamo action in steady ABC flows (3D,
helical) suffered from poor resolution so
inconclusive.

Vishik proved that exponential stretching
of fluid elements necessary for fast dynamo




Solution: combine flow with velocity dependent only
on (x,y) with time dependence so as to ensure
exponential stretching at least in (Xx,y) plane. At that
time it was thought helicity was useful for fast
dynamo action so looked for helical flow. Same idea
had by Otani in an earlier abstract but no published
paper at that time. So choose flow of form

u(x,y,t)=VXP(x,y0)Z + ayp(x,y,1)Z
Y(x,y,t)=sin(x+sin(wt))+cos(y+cos(wt)) (G+P “CP flow”))

Y(x,y,t)=cos(x)cos?(t)-sin(y)sin’(t) (Otani “MW+ flow”)

Induction equation separable in z so seek solutions «exp(ikt)
CP flow like the Roberts flow, stirred (also had the LP flow, shaken not stirred...).




Results suggest that dynamo is fast - apparently confirmed by
later computations. Structure of field at high Rm closely related
to regions of stretching. Internal structures scale with Rm.

Wavenumber k for maximum growth rate has finite limit - in
contrast to that for steady (Roberts) flow.

yien

FIG. 3 Contours of B, at x=0: CP flow, k=0.57, R.,=2,000.
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How special is the
C P ﬂ OW? N Fluctuations in Quasi-Two-Dimensional Fast Dynamos

Fausto Cattaneo,' Eun-jin Kim,? Michael Proctor,® and Louis Tao?

VOLUME 75, NUMBER 8 PHYSICAL REVIEW LETTERS 21 AuaGusT 1995

! Astronomy and Astrophysics Center, University of Chicago, 5640 South Ellis Avenue, Chicago Hlinois 60637

i i 2The Enrico Fermi Institute, University of Chicago, 5640 South Ellis Avenue, Chicago Illinois 60637
Eulerian flow highly structured
i y 3Department of Applied Mathematics and Theoretical Physics, University of Cambridge Cambridge, CB3 9EW, United Kingdom
1 (Received 4 January 1995)
- not typical of ‘turbulent :
flows.

Can examine ‘scaling laws’ for
a variety of 2D flows (Cattaneo
et al) - in particular consider

M n
Rl:@NRm

where @ = [(B)|, M = (|B|*).

if n~1 and Rm >>1 then flux
still small when energy large -
so little large scale field
generated. But if n<<1 then

energy on all scales. ), — C( %(Cos(y + a.coswt) + sin(z + sinwt))

3 different flows: —Bcos/3tsin 2z sin 2y), C = (1+ B2/3)"2

V1l a=1, =0 w=1
V2 a=2, (=1,




Tilted fields in
magnetoconvection

As pointed out by Hurlburt, non-Boussinesq
convection in a layer with a tilted field has no
steady solutions.

Various types of oblique boundary conditions:
1. specified tilt: Bx/Bz=tang

2. vertical field at base, potential field above
tending to uniform tilted field at infinity

3. Line-tied condition at both boundaries.

How do conditions determine




For simplicity
consider near
Boussinesg model
with non-uniform
thermal conductivity
and potential field

condition, in case
where vertical field
leads to
oscillation(Thompso

n 2008)
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Eigenvalue plot
for various cases
shows that there
can be
asymmetrical
situations where

the spectrum is
still symmetrical!
How is this

5 5
Re(s) Re(s)
nglll‘(‘ 2.6: Plots uft‘ig'('n\'zllm.\\ s in the ('4!1111.11('_\’ ])121114‘ as R is varied. The
crosses are plotted at intervals of 200 in R. In each case k is fixed and equal
to (ke,0), where k. is the critical wavenumber (i.e. the one that minimizes
R.). (a) Vertical field (¢ = 0°), with k = 1. (b) ¢ = 15° and k = 1. (c)
As (b), but with a fixed angle condition at the bottom of the layer (the
other three cases use a tied field condition at the bottom.) (d) ¢ = 15° and
K= (z + 1..-"'2)_3, Note: in case (c) the locus of 4."1"'_’,'("11\’11]11(",\ passes rIll‘r.fll,g'h
the origin, whereas in case (d) it merely passes very close to the origin — it

in fact crosses the imaginary axis slightly below the origin.




Answer lies in an interesting mutual
adjointness property of the

equations.
Geophys. Astrophys. Fluid Dyn. 2010 (in press)

Effects of boundary conditions on the onset of convection
with tilted magnetic fields and rotation vectors

M. R. E. PROCTOR*, N. O. WEISS, S. D. THOMPSON and N. T. ROXBURGH
Department of Applied Mathematics and Theoretical Physics,
Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 OWA , UK

Consider 2D solutions with e.g. B= Vx(Aey),
A=Re(4(z)ei*)

For tilted field condition: A’=-iktan¢ A

Line tied: 4=0
Potential: 4’=-|k|4




The system can be written in the matrix form

sCX =FX

A
where X = | 9 |. We also define the related vector Y =
v

The differential operators C, F take the form

[ Q¢ 0 0
0 —X(D*-k? 0 | and
0 0 R
QC3(D? — k?) Q¢ (cos D + ik sin p) 0
—QC(D? — k?)(cos ¢D + ik sin ¢) —(D? — k?)?
0 iRk R(D? — k?)

Introduce the (generalised) inner product
1 1
(X1, X5) E/ YT X, dz =/ X TYsdz = (Xo, X1),
0 0

as long as A;, A5 obey the same boundary conditions.




Define X T = [A, 1, 0], where A, 1,0 obey the same boundary conditions as
A, 1, 0 respectively. Then

1 1
(X, (sCX — FX)) = / ¥*T(sCX —FX)dz = f YT(s*CX—F' X)* = (s*CX—F'X), X),
0 0

QC%(D? — k?) —Q((cos ¢D + ik sin ¢) 0
FI = | Q¢(D? — k?)(cos D + iksin ¢) —(D? — k?)? —iRk
0 i Rk R(D? — k?)

Thus F' is the formal adjoint of F, and therefore its spectrum is the complex
conjugate of that of F. Now replace X by Z = ,then s*CX =F'X
becomes
s*CZ =FZ.
So get identical problem, with s being replaced by s*!
Does not work for tilted field
b.c.’s but does work for others,
even with asymmetrical

mechanical and thermal b.c.’s
that are self adjoint.




Mean field theory for MHD
states

Is traditional mean field theory relevant to
long wavelength instabilities of fully
evolved small-scale dynamos?

New work with David Hughes and Alice
Courvoisier suggests that in many cases
traditional ideas should be modified.

PROCEEDINGS
—OoF—— [\ Proc. R. Soc. A (2010) 466, 583-601

. I\ '-\.
THE ROYAL ,,;"/:\\\\ doi:10.1098, rspa.2009.0384
SOCIETY ZL 2\ Published online 29 October 2009

Self-consistent mean-field
magnetohydrodynamics

By A. Courvorsier!*, D. W. Huchges! anp M. R. E. ProcToRr?

1 Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK
2DAMTP, Centre for Mathematical Sciences, University of Cambridge,
Cambridge CB3 0OWA, UK




General linear stability of an MHD
state

Consider basic state U(x,?), B(x,t). EQuations

for small perturbations u(x,1), b(x,1):

%—T:+U~Vu+u~VU = —-Vp+B-Vb+b-VB + PmV-u,
%—}-U-Vb—l—u-VB = B-Vu+b-VU + Vb,

plainly the growth of disturbances is not
decided by the induction equation alone!

u=uX,T)+u(z,X,t,T)

Consider now situation when perturbation
fields have mean and fluctuating parts, e.g.




Then we can formally write down equations for the mean field
and flow:

B;b' +b;B) + PmVyu,

0
BX(

Bu 0 ;
BT 59X, (Uju' +u;U) = —Vxp+

b
oT

Vx x (U x b + ' x B) + Vib,

Since fluctuation equations are linear, ignoring diffusion these
can be written in the form

du; 0 g o 1@
o7 e 59X, (sz +T”lbz):—

Ob; 0 (1)
ﬁ = Cijk v aX (akl

Op
0X,;’

b+ oy w).

oV is the usual a-effect. IT'(M) is the AKA (”anisotropic kinematic o effect”)
Use ‘short-sudden’ approximation to get explicit formulae

=7(b-VB-u-VU), b =7(b-VU—-u-VB).

(2
27—('}"213'[ + A/’j-zll): il _27-62?772.71.'\/771.-nl: where
. OB;
= .
00X




These

equations can

be validated
for o ng- (a) CP flow of Galloway & Proctor

Choose forcing that drives simple flows when By = 0

Up=Vx@W2)+wz2=Upy + wZ2.

wavelength % = w = 1/3/2 (cos(z + cost) + sin(y + sint)).
instabilities of () AkA fiow

simple 2D ,
state. The Uo = — (cos (y + Re™t) +sin (y + Re™ 1)

basic state is cos (z — Re™'t) —sin (z — Re™ 't),
an MHD state 2(cos (y + Re™'t) + cos (z — Re™ 't)) .
as we impose a (c)MW+ flow of Otani

uniform ¥ = —w = (cosz cos® t — cos y sin” t)
mag netic field where in each case, (since V x (U - VU) = 0)

Bo. Flow driven
by 2D forcing.

F=Fg+F2=(0; — Re"'V)U,.




Start with perturbation equations:

@w—Re 'VPu = —Vr+V.-(Bb+bB—-Uu—ulU)+ By-Vb,
b—Rm V% = Vx(Bxu+bxU)+By-Vu,
V-u = V-b =0.

Separate variables in z,t¢ so that
(b, 1), u(,1), 7(x,t)) = (H(z,y,1), V(z,y,1), L(z,y,t)) e*=TPE,

Write variables as sum of mean and fluctuating parts:

(b(z,1),@(2,t),p(2, 1)) = (H),(V), (W) e*=?®E " H = (H) + h, etc.

Expand in powers of k: H = Zan”, p(k) = ank".
n n>0
Obtain sequence of problems for mean and fluctuating parts




Can calculate growth rates correct to
leading order in wavenumber k in terms of
basic state.

Leading order average takes the form

p1<H0> =12 X <’UO X B+ U x ho),
p1<V0> = —32lly + 12 - <hoB + Bhgy — voU — U’Uo>,
2 (Hp)=0, 2-(Vo)=0, or

p1(Ho) =i2 x (a” - (Ho) +a - (Vy)),
p1(Vo) = —i2lly +i2 - (TZ - (Ho) + TV - (V).

In component form we have

- B B U
—Qy1 —Qgy —U9

B B U
gll 312 8‘11
I'31 I'30 I'31

B B U
" ]‘—‘231 F232 I\231

J40) V | (1 1 alLe IS | [‘ | be | § “/ s )




Example: MW+
flow

Figure 3. Left: o(k) for Rm = 16, B = 0.001. The dashed line corresponds to Ak, where
A is the positive eigenvalue of A. Right: o(k) for the magnetic problem (+) and the full
problem (x, velocity mode, and ¢, magnetic mode) for Rm = 16 and B = 0.25. The dashed
lines corresponds to Ak, where X stands for the positive eigenvalue(s) of A(B) (for the
magnetic problem) and of M (for the full problem).

Example: AKA

Figure 2. o(k) (left) and w(k) (right) for the AKA forcing; Rm = 16, B = 0.1. The dashed
lines corresponds to Re[A]k (left) and Im[A]lk (right), where A is the eigenvalue of M
with the largest real part.




What about aperiodic MHD states?

Direct calculation now impossible. But can
in principle measure the mean coefficients
by evaluating EMF and Reynolds stress by
imposing uniform magnetic fields and flows
on an MHD state with no mean.

Problem: getting adequate signal/noise




With grateful thanks to all my
collaborators!




