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• The hard man beneath the aimiable 
exterior!



 Macrodynamics 
(the “Malkus-Proctor mechanism”)

Introduced the idea that large scale 
induced velocity fields could provide 
equilibration of mean field dynamo 
models



Remarks: 

Scaling assumes Elsasser number O(1) - reasonable for 
Earth        E<<1 and EM <<1 so primary balance is 
magnetostrophic

Setting E,EM =0 gives equations that require a solvability 
condition - which determines the geostrophic flow V(s) : 
Taylor’s condition

For E<<1 but nonzero equations have a 
different character leading to a condition      
of the form



Results and follow-ups: 
As E → 0 does V→ ∞  or T(s)→0? And what is dependence on E?

Appears possible to find solutions where V=O(1) if linear problem 
sufficiently supercritical. Further work by Soward & Jones, Ierley and 
Hollerbach confirms. But relations between Taylor type states and the 
linear problem can be complicated.

Braginsky suggested that perhaps V∼ 1/√E, T∼√E. Now thought not 



Fast dynamos and the Galloway-
Proctor flow

Notion of fast dynamo introduced by 
Zel’dovich - can a dynamo at high Rm grow 
at a rate independent of diffusion?  
Principal mechanism is field line stretching 
at a rate that overcomes negative effects of 
cancellation of oppositely directed flux. 
Clearly diffusion is essential if total flux is 
to increase exponentially.

Many earlier `demonstrations’ of fast 
dynamo action used maps to represent 
flows - untypical. Numerical calculation of 
dynamo action in steady ABC flows (3D, 
helical) suffered from poor resolution so 
inconclusive.

Vishik proved that exponential stretching 
of fluid elements necessary for fast dynamo 



Solution: combine flow with velocity dependent only 
on (x,y) with time dependence so as to ensure 
exponential stretching at least in (x,y) plane. At that 
time it was thought helicity was useful for fast 
dynamo action so looked for helical flow. Same idea 
had by Otani in an earlier abstract but no published 
paper at that time. So choose flow of form 

u(x,y,t)=∇×ψ(x,y,t)ẑ + αψ(x,y,t)ẑ

ψ(x,y,t)=sin(x+sin(ωt))+cos(y+cos(ωt)) (G+P “CP flow”))

 ψ(x,y,t)=cos(x)cos2(t)-sin(y)sin2(t) (Otani “MW+ flow”)

Induction equation separable in z so seek solutions ∝exp(ikt) 
CP flow like the Roberts flow, stirred (also had the LP flow, shaken not stirred...).



Results suggest that dynamo is fast - apparently confirmed by 
later computations. Structure of field  at high Rm closely related 
to regions of stretching. Internal structures scale with Rm.

Wavenumber k for maximum growth rate has finite limit - in 
contrast to that for steady (Roberts) flow.



How special is the 
CP flow?
Eulerian flow highly structured 
- not typical of ‘turbulent’ 
flows.

Can examine ‘scaling laws’ for 
a variety of 2D flows (Cattaneo 
et al) - in particular consider

if n~1  and Rm >>1 then flux 
still small when energy large - 
so little large scale field 
generated. But if n<<1 then 
energy on all scales.

3 different flows:



Tilted fields in 
magnetoconvection
As pointed out by Hurlburt, non-Boussinesq 
convection in a layer with a tilted field has no 
steady solutions.

Various types of oblique boundary conditions:

1. specified tilt: Bx/Bz=tanφ

2. vertical field at base, potential field above 
tending to uniform tilted field at infinity

3. Line-tied condition at both boundaries.

How do conditions determine 



For simplicity 
consider near 
Boussinesq model 
with non-uniform 
thermal conductivity 
and potential field 
condition, in case 
where vertical field 
leads to 
oscillation(Thompso
n 2008)



Eigenvalue plot 
for various cases 
shows that there 
can be 
asymmetrical 
situations where 
the spectrum is 
still symmetrical! 
How is this 



Answer lies in an interesting mutual 
adjointness property of the 
equations.

Consider 2D solutions with e.g. B= ∇×(Aey), 
A=Re(Â(z)eikx)

For tilted field condition: Â’=-ik tanφÂ

Line tied: Â=0
Potential: Â’=-|k|Â

Geophys. Astrophys. Fluid Dyn. 2010 (in press)





Does not work for tilted field 
b.c.’s  but does work for others, 

even with asymmetrical 
mechanical and thermal b.c.’s 

that are self adjoint.



Mean field theory for MHD 
states
Is traditional mean field theory relevant to 
long wavelength instabilities of fully 
evolved small-scale dynamos? 
New work with David Hughes and Alice 
Courvoisier suggests that in many cases 
traditional ideas should be modified.



General linear stability of an MHD 
state
Consider basic state U(x,t), B(x,t). Equations 
for small perturbations u(x,t), b(x,t): 

plainly the growth of disturbances is not 
decided by the induction equation alone! 

Consider now situation when perturbation 
fields have mean and fluctuating parts, e.g.



Then we can formally write down equations for the mean field 
and flow:

Since fluctuation equations are linear, ignoring diffusion these 
can be written in the form



These 
equations can 
be validated 
for ong-
wavelength 
instabilities of 
simple 2D 
state. The 
basic state is 
an MHD state 
as we impose a 
uniform 
magnetic field 
B0 . Flow driven 
by 2D forcing.





Can calculate growth rates correct to 
leading order in wavenumber k in terms of 
basic state.



Example: MW+ 
flow

Example: AKA 



What about aperiodic MHD states?
Direct calculation now impossible. But can 
in principle measure the mean coefficients 
by evaluating EMF and Reynolds stress by 
imposing uniform magnetic fields and flows 
on an MHD state with no mean.

Problem: getting adequate signal/noise 



With grateful thanks to all my 
collaborators!


