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Motivation

Investigating compressible, rapidly rotating, dynamos in spherical shell
geometry, driven by convection, using the anelastic approximation.

First aim is to establish simple solutions so the various codes (Leeds code,
ASH code, Glatzmaier’s original anelastic code, several others in progress) can
be benchmarked against each other. Solutions steady in a drifting frame have
well-defined energy, heat flux etc. which can be checked.

Codes use different methods: all have taken years to develop. Need large HPC
machines to run, so relatively cheap benchmarks are at a premium.

Focussed mainly on modest Rayleigh numbers, and comparing with the very
extensive simulations of the equivalent Boussinesq problem.

Second aim is to investigate what kind of dynamos are found in strongly
compressible shells.
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The configuration

Inner core: electrically insulating

Outer core: conducting fluid. Vacuum
outside. Stress-free boundaries.

Gravity ∼ 1/r2: (massive inner core)

Anelastic approximation: no sound waves:
∇ · (ρu) = 0. Toroidal-Poloidal
expansion.

Viscous and Joule heating in entropy
equation.

Rapid rotation, so low Ekman number E = ν/Ωd2. Kinematic viscosity ν
constant throughout shell, similarly κ and η.

Length scale d is the gap-width. Constant entropy on the boundaries, with
entropy drop across the shell driving convection.
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Polytropic Basic State

p = p0ζ
n+1, ρ = ρ0ζ

n, T = T0ζ, ζ =
c1
r

+ c0

where c1 and c0 are constants.

Polytropic index n = 1/(γ − 1) = 2. Radius ratio ri
ro

= 0.35.

Dimensionless parameters are:

Ra =
GMd∆S
νκcp

, P r =
ν

κ
, Pm =

ν

η
, E =

ν

Ωd2

Nρ = ln
(
ρi
ρo

)
, n : polytropic index, radius ratio =

ri
ro

∆S is entropy drop across the shell. Nρ = 3 has factor 20 density drop across
shell, Nρ = 5 factor 150. ν, κ, η all constant.
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Anelastic equations

Use Lantz/Braginsky/Roberts formulation (basic state near adiabatic, ∆S/cp
small)

E

Pm

Du
Dt

+ 2ẑ× u = −∇
(
p

ρ

)
+

1
ρ

(∇×B)×B + Fν +
RaEPmSr̂
Pr r2

Buoyancy has form of entropy fluctuation plus a gradient.

Entropy equation takes form

DS

Dt
=
Pm

Pr
ζ−n−1∇ · ζn+1∇S +

Di

ζ

[
E−1ζ−n (∇×B)2 +Q∗

ν

]
with Di =

c1Pr

PmRa
. Note that turbulent entropy diffusion assumed to

dominate laminar temperature diffusion.
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Hydrodynamic benchmark (no magnetic field)

equatorial meridional
plane slice
ur ur

equatorial meridional
plane slice
uφ zonal uφ

E = 1e− 03, Ra = 351, 806, Pr = 1, Nρ = 5, η = 0.35, n = 2

Solution steady in a drifting frame, has m = 19 symmetry. Critical Ra for
onset of convection Ra = 283, 175, with m = 20.

Good agreement with other codes tested so far.
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Saturation of the steady dipolar solution
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E = 2e − 03, Ra = 80, 000, Pr = 1, Pm = 50, Nρ = 3, η = 0.35,
n = 2

Time here is measured in magnetic diffusion times, so t=2 corresponds to
100 viscous diffusion times. Timestep is 3e-06 (or less) on magnetic diffusion
timescale. Fortunately, the solution does not require very high resolution: 64
radial points and 48 X 48 spherical harmonics gives well-resolved solutions.
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Subcritical behaviour

The final solution is steady in a drifting frame, so the rolls propagate round, but
the kinetic and magnetic energies don’t change. Has exact m = 7 symmetry.

The critical Ra for onset of convection at these parameters is 81,327.75, with
m = 8, so this solution at Ra = 80, 000 is completely subcritical.

Not only would no dynamo grow from a small initial seed field, without
magnetic field there would be no convection at all!

This behaviour has not (yet) been found in spherical Boussinesq dynamos.
There the critical Ra for onset is usually much smaller than the Ra at which
sustained magnetic fields are found.

Suggests that magnetic field is having a bigger influence on compressible
convection than in the Boussinesq case.

Also found at Ra = 77, 000, Pm = 100.
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Flow creating a steady dipolar solution

equatorial meridional
plane slice
ur ur

equatorial meridional
plane slice
uφ zonal uφ

E = 2e − 03, Ra = 80, 000, Pr = 1, Pm = 50, Nρ = 3, η = 0.35,
n = 2
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Field for the dipole benchmark

br viewed meridional
from slice
N. Pole br

z-slice meridional
at z = 0.5 slice
br zonal bφ

E = 2e − 03, Ra = 80, 000, Pr = 1, Pm = 50, Nρ = 3, η = 0.35,
n = 2
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Steady solution at larger Pr

E = 1e − 03, Ra = 230, 000, Pr = 6, Pm = 95, Nρ = 3, η = 0.35,
n = 2. Resolution 64× 64× 64.

Now looked at higher fluid Prandtl number cases. This reduces the importance
of Reynolds stresses, and so reduces the zonal flow.

Found steady solutions at lower E (faster rotation). m increases, partly as a
consequence of larger E and also because of larger Pr.

Critical Ra for onset of convection is m = 14, Ra = 206, 197.73, ω =
−25.288, so this solution is not subcritical for convection.

Field configuration completely different: equatorial dipole, not an axial dipole.

These equatorial dipole dynamos take longer to saturate, and require slightly
higher resolution. This solution has an exact m = 2 symmetry, though the
convection is dominated by m = 14.
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Saturation of the equatorial dipole solution
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E = 1e − 03, Ra = 230, 000, Pr = 6, Pm = 95, Nρ = 3, η = 0.35,
n = 2.

Flow is not much affected by the field, and magnetic energy smaller than
kinetic energy.
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Flow creating the equatorial dipole solution

equatorial meridional
plane slice
ur ur

equatorial meridional
plane slice
uφ zonal uφ

E = 1e − 03, Ra = 230, 000, Pr = 6, Pm = 95, Nρ = 3, η = 0.35,
n = 2.

Note that critical Ra for onset of convection is 206,197.73, with m = 14
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Field for the equatorial dipole

br viewed meridional
from slice
equator br

z-slice meridional
at z = 0.5 slice
br zonal bφ

E = 2e − 03, Ra = 80, 000, Pr = 1, Pm = 50, Nρ = 3, η = 0.35,
n = 2

Field has quadrupolar parity about the equator.
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Flow for an Nρ = 5 steady solution

equatorial meridional
plane slice
ur ur

equatorial meridional
plane slice
uφ zonal uφ

E = 1e − 03, Ra = 385, 000, Pr = 1, Pm = 20, Nρ = 5, η = 0.35,
n = 2.

Note that critical Ra for onset of convection is 283,175, with m = 20.
m = 19, solution found here, is also close to marginal.
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Field for an Nρ = 5 steady solution

br viewed equatorial
from slice
equator bθ

meridional meridional
slice slice
br zonal bφ

Inside, the field has dipolar form, with anm = 5 perturbation form. Externally,
them = 19 structure is seen. This convectively imposed structure only occurs
near outer boundary. Solution has small basin of attraction.
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Tranverse dipole at high Ra
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E = 1e − 03, Ra = 764, 000, Pr = 1, Pm = 5, Nρ = 5, η = 0.35,
n = 2. Even at 3 times critical, flow and field fluctuate rapidly on the diffusion
time-scale.

At Prandtl number Pr = 1 transverse dipoles, complicated versions of the
symmetric equatorial dipole, are common.
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Tranverse dipole at high Ra

equatorial meridional
slice slice
ur ur

br at meridional
outer slice
surface br

Note the convection is now concentrated near the outer boundary. Resolution
of 96× 192× 192 required.

Field is generated mostly in Northern hemisphere.
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Tranverse dipole: external field

The external fields associated with these transverse field solutions consist of
starspots which can occur at any latitude.
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Conclusions

(i) Nonmagnetic convection: compressibility increases critical azimuthal
wavenumber. When Nρ large, convection strongest near outer boundary.

(ii) Some solutions steady in a drifting frame have been found, suitable as
benchmarks. These are only slightly supercritical, as secondary instabilities
come in as Ra raised.

(iii) Surprisingly, magnetic solutions found at Ra below that required for
onset of nonmagnetic convection. This has not yet been found for spherical
Boussinesq models.

(iv) Compressible dynamos have more diverse field configurations than
Boussinesq dynamos. In particular, transverse dipoles common as well as
axial dipoles.

(v) Congratulations Mike !!
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