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» Taylor, 1963
» Proctor, 1975; Malkus & Proctor, 1975

» 1980s onwards, many



Plan

» Setup of the inviscid problem
» A fully spectral expansion for the full sphere

» Use of the expansion for the inviscid problem — a problem
with enumerable constraints

» A toy problem



Forces in the core
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Simplified dynamics
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Navier-Stokes and Induction

[Non-dimensionalised]

Ro<gl:+(u-V)u>—|—2><u——VI'I+C?—|—EV2u

+[V x B] x B,
??sz(uXB)—i—VzB,

[+ equation of heat transfer]

with V -u =V - B = 0, where u denotes the core flow, I the
modified pressure, B the magnetic field and C the buoyancy force.
R, ~ 10~? (Rotation/Magnetic Decay)

E~107%



Magnetostrophic Balance

[Non-dimensionalised|
Slow motions

zxu=—-VN+ C¢ +[VxB]xB,

Coriolis  Pressure Buoyancy Lorentz



The Taylor State (Taylor [1963])

This truly makes viscosity unimportant (E=Ro=0) [Dimensional]
Integrate
20Q Av = -Vp + JAB + 0's
= —Pressure Gradient + Lorentz Force + Buoyancy

Coriolis force

over cylinders coaxial with rotation axis; find
T:/ [JAB]ydpdz=0 Vs
C(s)

Applies on every cylinder.
Taylor showed that when this condition is satisfied, the flow in the

core can be uniquely found. [lt is necessary and sufficient].



One difficulty

Spherical: mechanical
boundary conditions on
v; insulating boundary
conditions on B

Cylindrical: integration
domain for B field

The need for 2 coordinate systems has historically caused problems

[m] = =



The basic equations [Taylor, 1963]

If
/ [JAB], dédz =0 Vs (1)
C(s)

B and buoyancy then determines the ageostrophic flow upae
2pQ A upag = —Vp+IJAB+ gt (2)

but there is an unknown geostrophic flow ug(s).
This is determined by the requirement that Taylor's Constraint is
satisfied at all times =

Lug(s) = F(Umag, B) (3)



Determination of ug(s)

d

o - [J/\B]¢ dpdz=0 (4)
leads to
o) (“52) 4 566) () = 66) (5

where a(s) and ((s) are given by the magnetic field and G(s) is a
known form independent of ug(s).

In a sphere this 2nd order d.e. can be solved with the 2 constraints
(i) regularity on the axis (ii) conservation of angular momentum
The system evolves according to

oB

— 2
5 =V(uAB)+nV°B (6)



Two types of problem

(b

shown in light grey.

Figure 1. An illustration of cylinders over which Taylor’s constraint is defined: (a) in the bulk of
the core and (b) inside the tangent cylinder. The outer-core and inner-core spherical boundaries are

We start with the full-sphere problem



The fully spectral method

» In order that V- B = 0 | write
B=VAVA(SH)+VA(TF)

» | expand S and T in spherical harmonics

L
S=Y Sr(r)Y/(6,9)

» In radius | want something akin to a Chebyshev expansion
(with spectral convergence)

S(r) =Y _f/(r)

» Consideration of regularity at the origin demands

S(ry~rt 1+ +..) as r—0



The Jones-Worland polynomials

fm(r) = r’JrlP,(f"ﬂ)(Zr2 -

1)

where P,SQ’B) is a Jacobi polynomial
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The Jones-Worland polynomials

vV v .v. v Y

£m(r) = PR (22 — 1)

Jones/Worland suggested v = —1/2 (Chebycheff type)
We have used this basis in kinematic dynamo calculations
We observe spectral convergence

We find superior performance to any Chebycheff scheme (or
finite differences) that do not honour origin regularity

We find slightly better performance with o = 0 (Legendre
type)



Test of Magnetic

decay problem

8th eigenvalue
Errorin

eigenvalue "’

Use Jones-Worland polynomials to solve for / = 20 eigenvalues.
a = 0 slightly superior.



The Taylor torque

T(s) = /C( )[J A Blgsdodz

T(s)=) ISP, Sy1+I[S7, T7]+ [T/, T}

S7" is poloidal
T/ is toroidal



The interactions

nTH(r)yTm aym
[T}, T =¢ 1) ! (1) Tw'(r) (Ylm n )sdqub—i—sc,
C(s)

r3sin 0 d¢p
e W1+ 1)SPVEST (L 9vy
S/ S = Y" dzd
[ST", 5] 950() Bsin g [y sdzd¢ +sc,
1 dasy oY
”L S”I — _ ll 1 T7”, n Y”L n
rros =@ (1T vt
" Yy
—n(n—}—l)SZLd L Y,:"aaé >sdzd¢),



Selection rules

Interactions are zero unless

S=S, T-T or T-S: m;=my,

S-S or T-T: m; #0, I, — [, =0 (mod 2); not both sine or cosine,
T-S L1 —1l=1 (mod 2); both sine or both cosine,

T—T: 1, # 1y, and

S-S, I, =1y: S7"*(r)/S]" “(r) not constant.



Form of Taylor Torque

» Choose polynomial expansion in radius
» We satisfy insulating boundary conditions and find that the
Taylor integral is

C
T(s) = s%V/1—s2 Z s
i=1
where s is cylindrical radius
» The problem of T(s) =0 Vs is now trivial

» Choose every a; = 0 in the expression for T(s)



Counting the constraints

» There are exactly C = L + 2N — 2 constraints in a sphere.
» Each constraint is quadratic in the magnetic field.

>
b"A1b=0
b Ab =0
b"Acb=0

where b are coefficients of the expansion for B (magnetic
field))

> When our spectral expansion is truncated at L in Y/"(0, ¢)
and N in r, we have 2NL(L + 2) free parameters.

» In principle, B-fields satisfying Taylor's constraint are
ubiquitous

» Existence is clear



The sparse matrices

Two different orderings of one of the constraint matrices



Scaling of the constraints

Lmaz  Nmaz L C NNZM NNZC  Density® (%) Storage®/Mb

6 4 384 12 20,754 23414 1.7 0.18
8 6 960 18 146,694 167,358 0.88 1.3

10 6 1440 20 299,406 351,876 0.72 2.7

12 4 1344 18 199,182 248,374 0.61 1.9

12 6 2016 22 542,502 654,042 0.61 5.0

14 8 3584 28 1,867,634 2,242,554 0.52 17

20 10 8800 38 10,722,486 13,236,186 0.36 100

50 20 104000 88  1,373,887,706  1,781,641,206 0.14 13,000



Toy problem: A first try at time-stepping

> Turn off the effect of up,g, allow only diffusion

» The B-field decays

» We use a projection method instead of the action of ug to
ensure Taylor's constraint is satisfied




Taylorisation
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Trouble in shells




The Hollerbach/Proctor constraint

2ZANu=-VP+f

du
— =-1/2 f
= —1/2(V A )

u(z):—l/Q/Z (VAf)dz+c

-2z

Need 2 boundary conditions to determine ¢ and c;,.



The Hollerbach/Proctor constraint

u.n=0




The Hollerbach/Proctor constraint

u.n=0

u.n=0



The Hollerbach/Proctor constraint

3 boundary conditions =>
condition on magnetic field




Hollerbach’s [1994] numerical simulations

Flow from imposed field that does not satisfy constraint (with
small viscosity)
Im{u,) Im(u,) Im(ug)

Flow when field allowed to adjust, satisfies the constraint



The form of the constraint

» f force must satisfy

zp 0 zp
zh/ (V/\f)zdz—r,-/ (V/\f)sdz+r;/ (VAf)sdz=0
0

—Zh —Zh

where f are the Lorentz+buoyancy forces. [z, is the
half-height of the tangent cylinder]

» This can be written as 2L constraints on the field.



Further troubles in a spherical shell

Recall Taylor's recipe for findiing ug(s).
Solve 2nd order differential equation.
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Further troubles in a spherical shell

Recall Taylor's recipe for findiing ug(s).

Solve 2nd order differential equation.

In | 94 2 constants of integration

In Il 3 2 constants of integration

In Il 3 2 constants of integration

Taylor (1963): regularity on axis, and conserve angular momentum
= 3 constraints



Further troubles in a spherical shell

Recall Taylor's recipe for findiing ug(s).

Solve 2nd order differential equation.

In | 94 2 constants of integration

In Il 3 2 constants of integration

In Il 3 2 constants of integration

Taylor (1963): regularity on axis, and conserve angular momentum
= 3 constraints

To avoid infinite shear, demand (a la Hollerbach/Proctor)
continuity in ug(s) at tangent cylinder:



Further troubles in a spherical shell

Recall Taylor's recipe for findiing ug(s).

Solve 2nd order differential equation.

In | 94 2 constants of integration

In Il 3 2 constants of integration

In Il 3 2 constants of integration

Taylor (1963): regularity on axis, and conserve angular momentum
= 3 constraints

To avoid infinite shear, demand (a la Hollerbach/Proctor)
continuity in ug(s) at tangent cylinder:

But now have 5 constraints on 6 unknowns!



Summary

» In a full sphere, a fully spectral method provides a finite
characterisation of Taylor's constraint

» Jones/Worland polynomials provide a numerically attractive
representation in radius

» A projection operator can be used to make T(s) =0

» We are presently studying geometric integrators for
time-marching schemes



