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I Taylor, 1963

I Proctor, 1975; Malkus & Proctor, 1975

I 1980s onwards, many



Plan

I Setup of the inviscid problem

I A fully spectral expansion for the full sphere

I Use of the expansion for the inviscid problem — a problem
with enumerable constraints

I A toy problem



Forces in the core

Ekman number = E =Viscous Force
Coriolis Force ∼ 10−15

Figure: J. Aubert



Preamble I



Navier-Stokes and Induction

[Non-dimensionalised]

Ro

(
∂u

∂t
+ (u ·∇)u

)
+ ẑ× u =−∇Π + C r̂ + E∇2u

+ [∇× B]× B,

∂B

∂t
= ∇× (u× B) +∇2B,

[+ equation of heat transfer]

with ∇ · u = ∇ · B = 0, where u denotes the core flow, Π the
modified pressure, B the magnetic field and C the buoyancy force.
Ro ∼ 10−9 (Rotation/Magnetic Decay)
E ∼ 10−15



Magnetostrophic Balance

[Non-dimensionalised]
Slow motions

ẑ× u =−∇Π + C r̂ + [∇× B]× B,

Coriolis Pressure Buoyancy Lorentz



The Taylor State (Taylor [1963])

This truly makes viscosity unimportant (E=Ro=0) [Dimensional]
Integrate

2ρΩ ∧ v = −∇p + J ∧ B + ρ′g
Coriolis force = −Pressure Gradient + Lorentz Force + Buoyancy

over cylinders coaxial with rotation axis; find

T =

∫
C(s)

[J ∧ B]φ dφ dz = 0 ∀s

Applies on every cylinder.
Taylor showed that when this condition is satisfied, the flow in the
core can be uniquely found. [It is necessary and sufficient].



One difficulty
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The need for 2 coordinate systems has historically caused problems



The basic equations [Taylor, 1963]

If∫
C(s)

[J ∧ B]φ dφ dz = 0 ∀s (1)

B and buoyancy then determines the ageostrophic flow umag

2ρΩ ∧ umag = −∇p + J ∧ B + ρ′g r̂ (2)

but there is an unknown geostrophic flow uG (s).
This is determined by the requirement that Taylor’s Constraint is
satisfied at all times ⇒

LuG (s) = F (umag,B) (3)



Determination of uG (s)

d

dt

∫
C(s)

[J ∧ B]φ dφ dz = 0 (4)

leads to

α(s)

(
uG (s)

s

)′′
+ β(s)

(
uG (s)

s

)′
= G (s) (5)

where α(s) and β(s) are given by the magnetic field and G (s) is a
known form independent of uG (s).
In a sphere this 2nd order d.e. can be solved with the 2 constraints
(i) regularity on the axis (ii) conservation of angular momentum
The system evolves according to

∂B

∂t
= ∇(u ∧ B) + η∇2B (6)



Two types of problem

stratified (of which the Boussinesq approximation is a special case), as described
by the anelastic approximation (Smylie & Rochester 1984). In the presence of a
solid inner core of radius ri , the cylinders C(s) with s%ri partition into two sets:
those above and below the inner core.

Taylor’s condition is an idealization that describes the dominant balance of
terms in the core. Small departures from a Taylor state, i.e. a regime where
Taylor’s condition is identically satisfied, require us to reinstate one of the terms
from (1.1) that does not appear in the magnetostrophic balance. Of the three
possibilities, viscosity, Reynolds stresses or flow acceleration, in his 1963 paper,
Taylor showed that the last (at least when cylindrically averaged) would act to
keep the average magnetic field in a Taylor state by means of damped torsional
oscillations having a period of decades (Braginsky 1970; Dumberry & Bloxham
2003). Indeed, there is strong observational evidence of this theory stemming from
the inferred structure of flow at the outer edge of the core and its consistency
with observed changes in the length of day (Jault et al. 1988; Jackson 1997).

This reinforces the view that, to leading order in E, the geomagnetic field is in
a Taylor state and since the 1970s, much effort has been expended in order to find
at least one example. The approach adopted was to solve the mean-field (or
averaged) dynamo equations at small E, with the expectation that the magnetic
field would converge towards a Taylor state and become independent of viscosity
as E/0, a scenario proposed by Malkus & Proctor (1975). A systematic
development of this idea was first carried out by Soward & Jones (1983), where it
was shown that beyond a critical level of forcing of a planar axisymmetric mean-
field dynamo, an exact Taylor state becomes energetically possible. Their model
exhibits a variety of such nonlinear solutions, only some of which bifurcate from
zero amplitude. Details of the subsequent post-critical equilibration were
explored by Hollerbach & Ierley (1991) with a spherical axisymmetric model,
in which the transition from viscous to inviscid solutions was explicitly
documented. In an alternative approach, Fearn & Proctor (1987) solved the
steady axisymmetric kinematic problem, defined by (1.2) alone (and ignoring
(1.1)), and attempted to find the geostrophic component of u that minimized the
departure of the generated magnetic field from a Taylor state. Relative to the
exploration here, it should be noted that both Fearn & Proctor (1987) and

(a) (b)

Figure 1. An illustration of cylinders over which Taylor’s constraint is defined: (a) in the bulk of
the core and (b) inside the tangent cylinder. The outer-core and inner-core spherical boundaries are
shown in light grey.
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We start with the full-sphere problem



The fully spectral method

I In order that ∇ · B = 0 I write

B = ∇∧∇ ∧ (S r̂) +∇∧ (T r̂)

I I expand S and T in spherical harmonics

S =
L∑

Sm
l (r)Y m

l (θ, φ)

I In radius I want something akin to a Chebyshev expansion
(with spectral convergence)

Sm
l (r) =

N∑
n=1

f n
l (r)

I Consideration of regularity at the origin demands

Sm
l (r) ∼ r l+1(1 + r2 + . . .) as r → 0



The Jones-Worland polynomials

f m
l (r) = r l+1P

(α,β)
n (2r2 − 1)

where P
(α,β)
n is a Jacobi polynomial

0.2 0.4 0.6 0.8 1.0

-0.10
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r^l*Jacobi l=20 n=30

α = −1/2, β = l + 1/2



The Jones-Worland polynomials

I f m
l (r) = r l+1P

(α,β)
n (2r2 − 1)

I Jones/Worland suggested α = −1/2 (Chebycheff type)

I We have used this basis in kinematic dynamo calculations

I We observe spectral convergence

I We find superior performance to any Chebycheff scheme (or
finite differences) that do not honour origin regularity

I We find slightly better performance with α = 0 (Legendre
type)



Test of Magnetic decay problem
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Figure 3: The relative errors of the 1st and 8th eigenvalues of (21) with l = 1 as a function of radial resolution Nmax for
the radial basis set. The solid circles represent the α = 0 basis and the empty circles α = −1/2.
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Figure 4: The relative errors of the 1st and 8th eigenvalues of (21) with l = 20 as a function of radial resolution Nmax for
the radial basis set. The solid circles represent α = 0 basis and the empty circles α = −1/2.
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1st eigenvalue 8th eigenvalue

Use Jones-Worland polynomials to solve for l = 20 eigenvalues.
α = 0 slightly superior.



The Taylor torque

T (s) =

∫
C(s)

[J ∧ B]φs dφ dz

T (s) =
∑

[Sm
l ,Sm

n ] + [Sm
l ,Tm

n ] + [Tm
l ,Tm

n ]

Sm
l is poloidal

Tm
l is toroidal



The interactions

where Ba and Bb denote any two vector spherical harmonics and C(s) denotes
the cylinder at cylindrical radius s lying within the core. We recall that the core
has a non-dimensional spherical radius of 1 and so the cylinders have end surfaces
at zZG

ffiffiffiffiffiffiffiffiffiffiffiffi
1Ks2

p
.

We term each contribution to T (s), [Ba, Bb], the ‘interaction’ between
spherical harmonics Ba and Bb. We say that two harmonics ‘interact’ if their
interaction is non-zero. Thus, the Taylor condition is equivalent to requiring that
the sum of all vector spherical harmonic interactions is zero.

The components of the vector spherical harmonics are given in spherical polar
coordinates as

V!V! Sm
l Y

m
l r̂ð ÞZ lðlC1ÞSm

l Y
m
l

r2
;
1

r

dSm
l

dr

vYm
l

vq
;

1

r sin q

dSm
l

dr

vYm
l

vf

 !

;

V! Tm
l Y

m
l r̂ð ÞZ 0;

Tm
l

r sin q

vYm
l

vf
;K

Tm
l

r

vYm
l

vq

 !

;

9
>>>>>=

>>>>>;

ð2:5Þ

where the superscripts signifying azimuthal dependence have been suppressed for
clarity. Noting that the curl of a poloidal vector is toroidal,

V!V!V! f ðrÞYm
l ðq;fÞr̂ð ÞZV! KV2

l f ðrÞYm
l ðq;fÞr̂

" #
; ð2:6Þ

where V2
l Zd2=dr2KlðlC1Þ=r2, the various forms of the Taylor interaction can

be expressed as

Tm
l ;T

m
n½ $Z#

CðsÞ

lðlC1ÞTm
l ðrÞTm

n ðrÞ
r3sin q

Ym
l
vYm

n

vf

$ %
s dz dfCsc; ð2:7Þ

Sm
l ;S

m
n½ $Z#

CðsÞ

lðlC1ÞSm
l V

2
nS

m
n

r3sin q
Ym

l
vYm

n

vf

$ %
s dz dfCsc; ð2:8Þ

Tm
l ;S

m
n½ $Z#

CðsÞ

1

r3
lðlC1ÞTm

l
dSm

n

dr
Ym

l
vYm

n

vq

$

KnðnC1ÞSm
n
dTm

l

dr
Ym

n
vYm

l

vq

%
s dz df; ð2:9Þ

where ‘sc’ denotes symmetric counterpart, obtained by interchanging the vector
harmonics. There is no counterpart for the last interaction because, recalling
that the curl of a poloidal vector is toroidal, (T1!T2)fZ0 for any two toroidal
vectors T1 and T2. Only the interactions involving identical wavenumber m have
been considered in (2.7)–(2.9) since, by virtue of a symmetry property discussed
in §3, all other terms are zero.

Lastly, we state an elementary, though important, consequence of the analytic
form of equation (2.8). Suppose each poloidal scalar satisfies the relation V2

nS
m
n Z

anðnC1ÞSm
n =r

2 for some arbitrary a that only depends, at most, on m and r. By
adding in the symmetric counterpart, the angular integrand becomes the exact
differential ðv=vfÞðYm

n Ym
l Þ and integrates to zero in f. Thus, this particularly

simple family of purely poloidal fields identically satisfies Taylor’s condition,
although they fail to be regular at the origin (see §4). Further discussion of these
solutions is taken up in §6.
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Selection rules

Interactions are zero unlessharmonics of wavenumbers m1 and m2 and of degrees l1 and l2 is identically zero
unless all the following conditions, where they apply, are true:

(1) S–S, T–T or T–S: m1Zm2,
(2) S–S or T–T: m1s0, l 1K l 2Z0 (mod 2); not both sine or cosine,
(3) T–S: l 1K l 2Z1 (mod 2); both sine or both cosine,
(4) TKT: l 1sl 2, and
(5) S–S, l 1Z l 2: S

m s
l ðrÞ=Sm c

l ðrÞ not constant.

Primarily owing to rule 1, the number of non-zero interactions of harmonics of
maximum degree Lmax is vastly less than N 2

H , where NHZ2LmaxðLmaxC2Þ, the
total number of vector harmonics. A straightforward counting argument shows
that the number of interactions is OðNH=LmaxÞ.

The extra selection rules (4 and 5) listed above follow from additional
identities arising from the explicit form of the Taylor integrals (equations (2.7)–
(2.9)). To derive rule 4, consider the interaction of two toroidal harmonics of
degree l, order m (rule 1) and of a different azimuthal phase (rule 2),

½Tm s
l ;Tm c

l $Z# lðlC1ÞTm s
l Tm c

l

r3 sin q

v

vf
Ym s

l Ym c
lð Þs dz dfZ 0: ð3:12Þ

Thus, the interaction of two toroidal harmonics that have identical spherical
harmonic degree and order (but may differ in radial behaviour) is zero.

Rule 5 follows from a similar but weaker result for the interaction between two
poloidal harmonics of identical degree, order and radial dependence. If Sm c

l ðrÞZ
ASm s

l ðrÞ for some constant A, then

Sm s
l ;Sm c

l½ $ZA#
CðsÞ

lðlC1ÞSm s
l V2

l S
m s
l

r3 sin q

v

vf
Ym s

l Ym c
lð Þs dz dfZ 0: ð3:13Þ

We illustrate these selection rules in figure 2, which shows all interactions
(solid lines) within two sets of harmonics. Owing to the structure of the selection
rules, it is not possible to construct a triad of harmonics that maximally interact.
That is, if two harmonics both interact with another harmonic, then they cannot
interact with each other.

4. The form of the Taylor integral

Having dealt with the crucial consequences of symmetry, we proceed to the main
result of this paper that the Taylor integral T (s) takes on a certain analytic form
if the radial expansion is chosen appropriately.

(a) (b)

Figure 2. The interactions, indicated by the solid lines, within illustrative sets of (a) mZ0 and (b)
mZ1 harmonics. As a specific example, the harmonics T1c

2 and T1s
4 interact by rules 1, 2 and 4;

rules 3 and 5 do not apply. The harmonics T1s
2 and T1c

2 do not interact by rule 4.Q1
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Form of Taylor Torque

I Choose polynomial expansion in radius

I We satisfy insulating boundary conditions and find that the
Taylor integral is

T (s) = s2
√

1− s2

C∑
i=1

αi s
2(i−1)

where s is cylindrical radius

I The problem of T (s) = 0 ∀s is now trivial

I Choose every αi = 0 in the expression for T (s)



Counting the constraints

I There are exactly C = L + 2N − 2 constraints in a sphere.

I Each constraint is quadratic in the magnetic field.

I

bTA1b = 0

bTA2b = 0

...

bTACb = 0

where b are coefficients of the expansion for B (magnetic
field))

I When our spectral expansion is truncated at L in Y m
l (θ, φ)

and N in r , we have 2NL(L + 2) free parameters.

I In principle, B-fields satisfying Taylor’s constraint are
ubiquitous

I Existence is clear



The sparse matrices

The evolution of a magnetic field subject to Taylor’s constraint 9

(a) (b)

Figure 3. Graphical representation of the sparsity and structure of the Taylor tensor T at truncation Lmax = 8, Nmax = 6. In each 960x960 matrix, the
(i, j) element is coloured black if harmonics i and j (or j and i) have a nonzero interaction or white otherwise. Matrix (a) is defined in terms of the spectral
ordering where the radial index varies most rapidly; this produces large blocks (rather than points). Matrix (b) adopts the spectral ordering with the harmonic
index varies the fastest. Both (a) and (b) contain the same number of black dots which constitute 0.88% of the available space and each have highly complex
stuctures.

10−8 – 103. This much larger range in the Chebyshev case is manifested by spectral convergence due to the lack of power in the finer scales,
presumably caused by the non-orthogonal radial basis sets. This suggests that for such a radial basis set, the monomial representation would
be preferred.

2.4 A time-evolution algorithm using projection

We are now in a position to describe the algorithm that may be used to evolve (2) with (3). Note that here we regard u as prescribed as there
is no available algorithm for its accurate computation from (1). Indeed, in the example “toy problems” that follow, we shall take u = 0.

It is helpful to compare such simplified models to the full solution of the magnetostrophic equations. Firstly, in the full problem, the
Lorentz force (and buoyancy force) will drive a magnetostrophic flow which is entirely absent in our problem. Although somewhat of a special
case, we may regard the buoyancy force as arising to everywhere, and at all times, exactly cancel the Lorentz force and thus umag = 0.
Secondly, in the full problem the geostrophic flow arises to keep B on the Taylor manifold. In our example model, we set ug = 0 and adopt
a projection method to constrain the evolution.

It is necessary to discretise the differential operators occurring, which we do by expanding all quantities in a fully spectral basis, as
previously described, and then projecting the equations back onto the basis using de-aliased transforms (e.g. Hollerbach 2000).

The induction equation is then of the form

ḃ = Pb

ˆ
f(b)

˜
(15)

where f is linear in b, the magnetic field spectral coefficients. Although the induction equation is formally linear, the addition of the operator
Pb, projecting onto the local tangent hyper-plane (depending quadratically on b), makes the entire operator nonlinear.
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Figure 4. A comparison of representations of the Taylor interaction between axisymmetric toroidal l = 9, n = 6 magnetic field mode and the axisymmetric
poloidal l = 10 n = 6 mode. The circles show the spectral coefficients (ck) and diamonds the Chebyshev coefficients c̃k . The range of coefficients are much
greater for the monomial representation than the Chebyshev case and the latter is therefore numerically preferred for constructing the tangent plane.
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Two different orderings of one of the constraint matrices



Scaling of the constraints

8 Philip W. Livermore, Glenn Ierley and Andrew Jackson

Lmax Nmax L C NNZM NNZC DensityC (%) StorageC/Mb

6 4 384 12 20,754 23,414 1.7 0.18
8 6 960 18 146,694 167,358 0.88 1.3

10 6 1440 20 299,406 351,876 0.72 2.7
12 4 1344 18 199,182 248,374 0.61 1.9

12 6 2016 22 542,502 654,042 0.61 5.0
14 8 3584 28 1,867,634 2,242,554 0.52 17

20 10 8800 38 10,722,486 13,236,186 0.36 100
50 20 104000 88 1,373,887,706 1,781,641,206 0.14 13,000

Table 1. Summary of numerical parameters for a variety of truncations in spherical harmonic degree (Lmax) and in radius (Nmax). From left to right: the
number of variables L = 2Nmax Lmax (Lmax + 2) in the spectral expansion, the number of Taylor constraints C in a full sphere, the number of nonzero
elements NNZ of T for both monomial (M) and Chebyshev polynomial (C) representation indicated by superscripts. The rightmost two columns supply,
correct to two significant figures, the density (the percentage of elements of T that are nonzero) and storage requirements (in double precision), both only for
the Chebyshev presentation, this being the most expedient choice as discussed in the text. A formula to enumerate both NNZM and NNZC is given and briefly
proved in Appendix A.

matrix J given by

Jkl =
∂

∂bl

X

i<j

Tijk bi bj =
X

i<l,l<j

(Tilk + Tljk) bl (14)

can be efficiently computed by taking one row at a time of the list representation of T and computing its contribution to the two relevant
entries in J . The elements of T are evaluated analytically using computer algebra (with the package Maple) and written to disk in double
precision floating point format.

Table 1 shows a summary of the numerical parameters involved for various truncations in spherical harmonic degree (Lmax) and in
radius (Nmax). The number of magnetic field spectral coefficients is denoted L and the number of Taylor conditions as C. As noted above,
the Taylor tensor is very sparse, as indicated by the number (NNZ) and fraction of nonzero elements. The superscript in the column heading
denotes whether monomials (M) or Chebyshev polynomials (C) are used in the representation of Taylor tensor. A formula for NNZ is given
and briefly proved in Appendix A.

To further illustrate the sparsity of the Taylor tensor and highlight its structural complexity, figure 3 shows a graphical depiction as 2D
symmetric matrices. Adopting the truncation Lmax = 8, Nmax = 6 associated with 960 spectral coefficients, a corresponding 960x960 grid
contains a black dot at the (i, j) entry if Tijk or Tjik is nonzero for any k (that is, harmonics i and j interact); the position is coloured white
otherwise. Such a matrix is independent of the representation used to formulate the Taylor tensor, since we are only concerned with nonzero
elements and not their precise form. The only remaining issue is to decide how the spectral coefficients are ordered. There are two natural ways
of doing this; common to each is an ordered list of the spherical harmonics within the truncation l ≤ Lmax of size N = 2Lmax(Lmax + 2),
distinguishing between poloidal and toroidal types. In figure (a), consistent with the results in §3.1, the spectral coefficients are ordered as`
(i, n)n=1,2,...,Nmax

´
i=1,2,...,N

where i indicates the harmonic index and n the radial index; that is, the radial index varies most rapidly.
This produces large blocks of interactions in the image. In figure (b), the order is the opposite:

`
(i, n)i=1,2,...,N

´
n=1,2,...,Nmax

i.e. with the
radial index varying most slowly. This has the effect of spreading out the interactions and creating a more scattered image. However, as they
represent the same object, both (a) and (b) have the same number of black dots. It is clear that the structure is extremely complex, and that
producing an analytic mapping of the grid position (i, j) to locate the nonzero entries is a highly nontrivial task.

Lastly, we briefly discuss why we have troubled to introduce different representations for the Taylor tensor (given that they are formally
equivalent); in particular, why there is an optimal choice from numerical considerations. The computation of J , required to compute the
normals to the tangent plane, necessitates the contraction of T with the vector of coefficients b (14). In fixed precision, severe inaccuracies
can arise if the quantities to be added vary dramatically in magnitude, due solely to roundoff error. For this reason, it is expedient to find a
representation of T with its elements of minimal range in magnitude. As a starting point for a discussion, figure 4 shows coefficients of two
representations of the Taylor tensor given by the interaction between the axisymmetric harmonics: toroidal; l = 9; n = 6 (harmonic i) and
poloidal; l = 10, n = 6 (harmonic j). With k plotted in the horizontal direction, the monomial coefficients Tijk are depicted by circles and
the Chebyshev coefficients T̃ijk by diamonds. It is immediately apparent that the entries of Tijk vary by O(1010), whereas those of T̃ijk vary
by only O(102). Thus, the Chebyshev representation offers much better alternative to the monomial representation, a result confirmed by the
time-dependent calculations in §3.1. Of all possible orthogonal polynomials, whether or not the Chebyshev polynomials in particular offer an
optimal representation we cannot say; but we speculate, owing to their uniform oscillation property, that they are close to it. Furthermore, it is
likely that any optimal representation depends on the structure of the magnetic field modes: in particular, the choice of radial basis functions
and, to a similar extent, the basis functions in solid angle too (here being the spherical harmonics). We may briefly consider what happens if
we alter the radial basis functions Sln and Tln (6) to the monomials rl+1+2n which, although being extremely ill-conditioned (Boyd 2001)
and not satisfying the boundary conditions (7), may give a general indication of what happens when the basic ingredients to the Taylor tensor
are changed. In this case, the monomial coefficients of T lie in the range 103 – 107 whereas the Chebyshev coefficients lie in the range



Toy problem: A first try at time-stepping

I Turn off the effect of umag , allow only diffusion
I The B-field decays
I We use a projection method instead of the action of uG to

ensure Taylor’s constraint is satisfied
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A

B

D

C

Figure 2. Consider a point A on the Taylor manifold (depicted, with artistic license, as the surface of the solid ellipse) with local tangent plane as shown.
Instantaneous values of ∂B

∂t as computed with an analytic ug points in the direction AD (in plane); ∂B
∂t computed using an inexact (or absent) ug points in

the direction AB (out of plane). A proxy for the action of ug is to project AB onto AC; although both AC and AD lie in the tangent plane, their in-plane
components differ.

2 CONSTRUCTION OF THE TANGENT PLANE

2.1 Finite characterisation of Taylor’s constraint

We discretise the (divergence-free) magnetic field in a truncated set of poloidal and toroidal vector spherical harmonics,

B =
LmaxX

l=1

lX

m=0

»
Sm s/c

l + Tm s/c
l

–
(4)

where

Sm s/c
l = ∇ ×∇ × [Y m s/c

l (θ, φ) Sm s/c
l (r) r̂],

Tm s/c
l = ∇ × [Y m s/c

l (θ, φ) T m s/c
l (r) r̂],

in spherical polar coordinates (r, θ, φ). The notation Y m s/c
l represents a (Schmidt quasi-normalised) spherical harmonic of degree l, order

m, and azimuthal dependence sin mφ or cos mφ as appropriate. The superscript “s/c” will be dropped henceforth to simplify notation, except
where we wish to draw attention to particular harmonics.

The development of the theory with which we can describe Taylor’s constraint is much simplified in a full-sphere (with no solid inner
core): the spherical shell case follows along similar but more involved lines. The magnetic field satisfies two key conditions: (i) it must
be everywhere smooth (infinitely differentiable) including at the origin, and (ii) it is required to satisfy electrically insulating boundary
conditions. We adopt a fully spectral representation in radius in terms of a Galerkin scheme of the form

Sm
l (r) =

NmaxX

n=1

almnSln(r), T m
l (r) =

NmaxX

n=1

blmnTln(r), (5)

in which condition (i) is satisfied by restricting the two families of basis functions, Sln(r) and Tln(r), to be of the form

rl+1 Qn(r2) (6)

where Qn is a polynomial of degree n (e.g. Boyd 2001). Condition (ii) is equivalent to the requirement that
dSm

l (r)
dr

+ lSm
l (r) = 0, T m

l (r) = 0, (7)

which places simple linear constraints on the structure of Qn. There remains some flexibility in selecting the Qn; here, we choose them to
render the basis sets, Sln and Tln, orthonormal:

Z 1

0

Sln(r) Slk(r) (1− r2)−1/2 dr =

Z 1

0

Tln(r) Tlk(r) (1− r2)−1/2 dr = δnk. (8)

Each radial basis function behaves asymptotically like an individual one-sided Jacobi polynomial and therefore takes on many of the optimal
properties of the Jacobi polynomials themselves (Li et al. 2010). As an alternative to this choice of orthonomality, by imposing orthogonality
on derivatives of these functions rather than the functions themselves, it is often possible to quasi-diagonalise the representation of certain
differential operators, for example, the Laplacian in spherical polar coordinates (Livermore 2010).

In the representation (5), it was shown in Livermore et al. (2008) that T (s) (of equation (3)) is simply

T (s) = s2
p

1− s2 Q̃Lmax+2Nmax−2(s
2) (9)
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Figure 5. Time evolution of two different measures of Taylorisation (a) σ and (b) τ , comparing the evolution both on and off the Taylor manifold. In each
case, the numerical scheme incorporating the projection P successfully evolves the field on the manifold by increasing the necessary cancellation by around
108 in either measure.

It will be of interest to see how the accuracy of the algorithm is influenced by the spectral truncation, and although we could use the same
(low-resolution) initial condition for each case, this would not be a full test of the algorithm.

In order to choose a general initial condition, we use the method described in Livermore et al. (2009) in which we exploit the fact
that the axisymmetric toroidal coefficients never themselves appear as squared terms in the Taylor constraints ck. By assuming that all the
remaining coefficients are prescribed, we only need solve a linear system to find an exact Taylor state, rather than having to solve a set of
coupled quadratic equations. In order to avoid any particular symmetries, our approach is to fill each non axisymmetric-toroidal entry of
the vector b1(0) with pseudo-random values drawn from the interval [0, 1] that are shaped with the envelope e−(l+n)/2 in order to mimic
an exponential fall-off with (l, n). The remaining set of axisymmetric toroidal modes are larger in number than the number of constraints
C and, in principle, we may select any C of them in order to formulate a linear system. However, some choices lead to poorly conditioned
linear systems and inaccurate Taylor states. Our approach was to select the first C modes from the ordered list (l, n) where both l and
n decrease from (Lmax, Nmax) with l varying most quickly. As shown in table 2, the results of this procedure were generally excellent,
producing an extremely small Taylorisation τ = O(10−12)) or better, using the Chebyshev representation of the Taylor tensor. The monomial
representation did not behave so well, since its linear system was more poorly conditioned, and produced τ = O(10−8) or better. The remarks
noted in Livermore et al. (2009) of potential problems in computing accurate Taylor states (with the monomial representation in mind) are
now greatly offset by the high performance of the Chebyshev representation.

Initially, consider the moderate truncation Lmax = 6, Nmax = 4, in which 384 variables must be evolved with or without the 12 Taylor
constraints (expressed in the Chebyshev representation). We evolve the initial condition from t = 0 until t = 0.01 in 1000 steps of size
h = 10−5. The end time corresponds to around 1/10 of the so-called dipole diffusion time (1/π2 in our dimensionless units), the slowest
free decay time of the system.

Figure 5 shows a comparison between the evolutions b1(t) and b2(t) in terms of the measures of Taylorisation (a) σ and (b) τ . There
are two key features of note. First is that the measures are very similar in magnitude and time-dependence, thus one is an excellent proxy for
the other. This also confirms that our calculations are correct because, as previously noted, σ and τ are computed using completely different
techniques. Second is that both measures of Taylorisation for b2 are O(108) smaller compared to those of b1. That is, with no numerical
enforcement of Taylor’s constraint, the decaying field b1 quickly leaves the manifold.

For comparison with existing estimates in the literature of geodynamos at small Ekman number, both Rotvig & Jones (2002) and
Stellmach & Hansen (2004) calculated τ = O(10−1) – O(10−2) (note that the Taylorisation defined in Rotvig & Jones (2002) is analagous
to our τ2), comparable to the evolution of b1. It is clear that our numerical method is able to satisfy Taylor’s constraint to a much higher
precision. Lastly, we remark that the value of τ for the constrained problem does in fact keep increasing for times beyond t = 0.01. In fact,
at t = 0.1, it has risen to O(10−6). Although this is still small, it highlights the fact that, due to numerical error, eventually the solution will
indeed diverge from the manifold (albeit very slowly). We discuss a remedy to this in §4.

We now turn to how the evolution of B is influenced by the enforcement of Taylor’s constraint. Figure (6)(a) shows a measure of the
energy in the magnetic field E =

R
V

B2 dV over the volume of the full-sphere V . In fact, the energies for both b1 and b2 overplot and
differ by only one part in 105 at t = 0.01. We conclude from this that Taylor’s constraint does not influence the macroscopic dynamics of
a decaying field in a full sphere in our toy example framework. However, in view of the results of figure 5, achieving a Taylor state is then
a rather delicate balance: only a very small change in the field is required to satisfy Taylor’s constraint. To further investigate the dynamics,
figure 6(b) shows the angle (in degrees) between the direction of the diffusing field and its projection (in spectral space) as a function of
time. That is, defining v1 = D b2 and v2 = Pb2(D b2) as a long list of ordered spectral coefficients, the angle α between them (in spectral
space) is

cos α = v̂1,v2 =
v1 · v2

|v1| |v2|
. (18)

This is a direct measure of the influence of the projection enforcing Taylor’s constraint on the solution, and because α is so close to 0, it

τ2 = (Taylor torques over cylinders)2

(Taylor torques)2 over cylinders



Trouble in shells

I

II

III

Figure 1: (a) The three regions in the fluid outer core in which the cylindrical contours, associated with Taylor’s constraint, are

defined: outside the tangent cylinder (I), inside the tangent cylinder and above (II) and below (III) the inner core. Dashed lines

mark the tangent cylinder. (b) Illustrative cylinders over which Taylor’s constraint is defined.

solutions. Indeed, the fact that Taylor’s constraint involves three continuums of conditions rather than just

one, leads to the expectation that the class of admissible magnetic field solutions is significantly smaller

than that for a full-sphere. The purpose of this paper is to confront this issue head on, by providing an

elementary mathematical structure for Taylor’s constraint and the explicit construction and comparison of

exact spherical shell with full-sphere Taylor states within a certain well-defined class.

The foundation on which we build was laid down in Livermore et al. [2008], and rests on looking for

solutions of (1) in isolation. This more abstract analysis removes the requirement that such magnetic fields

are stable, or even time-averaged, solutions of the full set of geodynamo equations in the Earth-like limit. To

describe the key result, let us first introduce some notation. We will write the magnetic field in a truncated

set of poloidal and toroidal vector spherical harmonics,

B =
Lmax∑

l=1

l∑

m=0

Sm s/c
l + Tm s/c

l (2)

where

Sm s/c
l = ∇×∇× [Y m s/c

l (θ, φ) Sm s/c
l (r) r̂],

Tm s/c
l = ∇× [Y m s/c

l (θ, φ) Tm s/c
l (r) r̂],

in spherical polar coordinates (r, θ,φ) and with r̂ denoting the unit position vector. The notation Y m s/c
l

represents a spherical harmonic of degree l, order m, and azimuthal dependence sinmφ or cos mφ as
4



The Hollerbach/Proctor constraint

2ẑ ∧ u = −∇P + f

du

dz
= −1/2(∇∧ f)

u(z) = −1/2

∫ z

−zh

(∇∧ f) dz + c

Need 2 boundary conditions to determine cs and cz .
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Hollerbach’s [1994] numerical simulations

Re(u, ) Re(u.) 

FIG. 1. At the top, the inviscid soktion (12) corresponding to f(,. Below, the 
viscous solutions at e=10e4, 10T4.‘, and 10W5. From left to right, the real 
parts of U, and U, , and the imaginary part of u+, . Confour intervals of 0.2 
for U, , 0.4 for uS, and 2 for U+ . 

One notes that c, and even c,~ are discontinuous across s = ri , 
and c@--+m as s-+-r;. And indeed, if one evaluates the con- 
straint (8), one obtains not 0, but 

/I z ~(-vxf& dz’fs L(VXf”)S dz’ =4, 
I 0 

taking the radii of the spherical shell to be ri= 3, r. = 3. This 
(formally valid) inviscid solution thus has little meaning in 
the vicinity of s = ri . Figure 1 shows the singularity in the 
inviscid solution, as well as how the viscous solution at Ek- 
man numbers of 10V4, 10-4.5, and 10V5 resolves the singu- 
larity. Shown in Fig. 1 are the real parts of U, and U, , and the 
imaginary part of uc . For this particular example, the invis- 
cid solution has U, and U, purely real, and U+ purely imagi- 
nary. The inclusion of viscosity destroys this phase relation- 
ship, but the out-of-phase component displays a similar 
boundary layer structure, and of course’vanishes sufficiently 
far from s = ri . 

The boundary layer in the viscous solutions is quite 
strong, and evidently rather slowly convergent, considering 
how far from s=ri one must go before the solution re- 
sembles the inviscid solution, even at e=10M5. The detailed 
structure appears to consist of several nested layers, not un- 
like the classical axisymmetric Stewartson’ layer, which con- 
sists of three nested layers of innermost thickness $I3 and 
outer thicknesses .c? and d/4. The purpose of the Stewartson 
layer, however, is quite different, and so one should not ex- 
pect the structure to be identical. In particular, one main 
function of the Stewartson layer is to provide a mass flux 

TABLE I. The quantity $z~~(VXf), dz'+sfi(VXf), dz'l, evaluated for 
s=ri, L=(,~-ry, as a function of A and l 

A 0 l/2 1 312 2 

.z=10-4 1.00 0.54 0.17 0.08 0.04 
c= 10-4.5 1.00 0.49 0.12 0.05 0.02 
CT= 10-s 1.00 0.42 0.08 0.02 10.01 

balance between the inner and outer Ekman layers. In con- 
trast, one notes that the shear layer obtained here is essen- 
tially independent of any Ekman layers; indeed, I specifically 
imposed stress-free boundary conditions at ri and r, to mini- 
mize the effects of any Ekman layers. Also, unlike the shear 
layer here, whose main function is precisely to accommodate 
the discontinuity in the normal component of the flow, the 
Stewartson layer involves no discontinuity in the normal 
component. For example, note in Fig. 1 how the azimuthal 
component u6 becomes increasingly large just inside the tan- 
gent cylinder as E becomes small, in agreement with the 
inviscid result c@-+w as s-rim. Such features are entirely 
absent in the axisymmetric Stewartson layer, precisely be- 
cause it involves no discontinuity in the normal component 
of the flow. 

As noted above, here I am not content in merely pointing 
out the existence of this singularity and the viscous shear 
layer that resolves it in the nonmagnetic regime; I am also 
interested in the effect that a perpendicularly applied mag- 
netic field might have on this shear layer. (It is intuitively 
plausible that the normal component of the field will have 
the greatest effect. For example, it is known that an order one 
magnetic field will suppress the axisymmetric Stewartson 
layer if it is normal,’ but not if it is tangential.“) So, I take, 
for the imposed axisymmetric field B=2s&-4zi!&, having 
the so-called quadrupolar symmetry about the equator. The 
Earth’s magnetic field is, in fact, predominantly dipolar, so in 
a sense this is the geophysicaIly “wrong” parity. However, 
this particular field has the very considerable advantage that 
its component perpendicular to the shear layer is constant 
over the whole shear layer, that is, B,= 1 everywhere on the 
inner core tangent cylinder s = ri . Any dipolar field would 
necessarily have B,g=O at the equator. Incidentally, for this 
particular symmetry of B, it then turns out that b must have 
the same symmetry as II. 

Table I shows the quantity 

1 
- 2 
4 II 

=(Vxf),dz’+s zwxf), dz’ , 
-0 I 0 

as it depends on A and E. According to (14), for A=0 this 
quantity- is exactly one for all E, since there is no magnetic 
adjustment. However, for h=O( 1). this quantity does in- 
creasingly adjust to zero as E becomes smal1. Indeed, for 
A=2 and e=.lO-‘, it is less than 0.01, so small that it can no 
longer be reliably evaluated at the truncation used here. 
Thus, it is quite clear that for sufficiently strong magnetic 
coupling between f and u, f does indeed adjust to satisfy (8) 
as E is decreased. Correspondingly, there should no longer be 
a shear layer in the solutions. Figures 2 and 3 show the flow 
u and the current density j=VXb for A=2, ~=10-“.‘, and 
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small viscosity)
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FIG. 2. The flow II for h=2, ~=10-~‘. Contour intervals of 0.04. 

indeed there are no shear layers observable. Furthermore, 
unlike the nonmagnetic solutions in Fig. 1, this solution is 
essentially independent of E; that is, the solution for E equals 
low4 or 10T5 would look almost indistinguishable. 

IV. CONCLUSION 

In this work I have pointed out once again that, in gen- 
eral, nonaxisymmetric solutions of the forced momentum 
equation in a rotating spherical shell are singular in the 
inertia-less, inviscid limit, with all three flow components 
discontinuous across the inner core tangent cylinder. In the 
nonmagnetic regime, where there is no dynamic coupling 
between f and II, this singularity can only be accommodated 
by a viscous shear layer, and viscosity is thus essential in 
obtaining sensible nonaxisymmetric solutions. In contrast, in 
the magnetic regime, where there is dynamic coupling be- 
tween f and u, this singularity is accommodated by an ad- 
justment in f to satisfy a particular integral constraint, and 
viscosity is thus not essential. 

Nevertheless, one should be extremely cautious about 
neglecting viscosity entirely. An immediate consequence of 
setting E to zero identically is that f must also satisfy (8) 
identical&. While the presence of the magnetic field effec- 
tively removes the singularity associated with the tangent 
cylinder, the price one pays is the need to satisfy the con- 

R&j*) R4is ) W&J 

FIG. 3. The current density j for h=2, c= IO-“.‘. Contour intervals of 0.04. =hVxVx(uxB), 

straint (8). However, one cannot solve for u and f as before 
in a sphere,” and merely impose (8) as an additional con- 
straint, for the system would then be overdetermined. The 
need to satisfy (8) requires an adjustment throughout the 
whole interior (note how the solution in Fig. 2 is quite dis- 
tinct from either the inviscid or the viscous solutions in Fig. 
1). One would have to solve for u and f self-consistently in 
such a way that (8) just happens to be satisfied, and it is not 
quite clear (to me at any rate) how one might do that. It is 
probably easiest computationally to include viscosity, as has 
been done here, and allow this dynamic adjustment to sort 
itself out. 
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APPENDIX: NUMERICAL SOLUTION 

We begin by decomposing b as 

b=Vx(gi’)+VxVx(h?), (Al! 
thereby satisfying V.b=O. We then expand g and h as [re- 
member there is also an implicit factor of exp(im4)] 

g(r, 0) = 22 gjirlPfl(cOS 0) 

j=l 

N, M,+Z 

=c c gjkTk-lWfy,(Cos e>, 
*1 

h(r,tY)=x hj(r)PtZ(cos 8) 
j=l 

N, M,+2 

=C C hjkTk-~(X)P~Z(COS O), 
j=l k=l 

Wb) 

where (r, 6’,+) are spherical coordinates. Here Pf(cos 0) are 
associated Legendre polynomials, with n I = 2j + m - 1, 
n2= 2j+m - 2 (it is here that we impose the appropriate 
symmetry about the equatorj. Here T,-,(x)~are Chebyshev 
polynomials, and 

r,+rz Y,-ri 
r=T+-----..x 2 iw 

determines X, the radial coordinate normalized to (- 1,l) 
across the gap. 

The r components of (10) and its curl then yield 

zl n,(n,ilj( &) (~jpg(ccx e)=i-.Vx(uW> 
iA4a) 

~ nl(nl+lj(&,,,~j(~)p~*(cos e, 
j=l 

(A4b) 
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The form of the constraint

I f force must satisfy

zh

∫ zh

−zh

(∇∧ f)z dz − ri

∫ 0

−zh

(∇∧ f)s dz + ri

∫ zh

0
(∇∧ f)s dz = 0

where f are the Lorentz+buoyancy forces. [zh is the
half-height of the tangent cylinder]

I This can be written as 2L constraints on the field.



Further troubles in a spherical shell
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Figure 1: (a) The three regions in the fluid outer core in which the cylindrical contours, associated with Taylor’s constraint, are

defined: outside the tangent cylinder (I), inside the tangent cylinder and above (II) and below (III) the inner core. Dashed lines

mark the tangent cylinder. (b) Illustrative cylinders over which Taylor’s constraint is defined.

solutions. Indeed, the fact that Taylor’s constraint involves three continuums of conditions rather than just

one, leads to the expectation that the class of admissible magnetic field solutions is significantly smaller

than that for a full-sphere. The purpose of this paper is to confront this issue head on, by providing an

elementary mathematical structure for Taylor’s constraint and the explicit construction and comparison of

exact spherical shell with full-sphere Taylor states within a certain well-defined class.

The foundation on which we build was laid down in Livermore et al. [2008], and rests on looking for

solutions of (1) in isolation. This more abstract analysis removes the requirement that such magnetic fields

are stable, or even time-averaged, solutions of the full set of geodynamo equations in the Earth-like limit. To

describe the key result, let us first introduce some notation. We will write the magnetic field in a truncated

set of poloidal and toroidal vector spherical harmonics,

B =
Lmax∑

l=1

l∑

m=0

Sm s/c
l + Tm s/c

l (2)

where

Sm s/c
l = ∇×∇× [Y m s/c

l (θ, φ) Sm s/c
l (r) r̂],

Tm s/c
l = ∇× [Y m s/c

l (θ, φ) Tm s/c
l (r) r̂],

in spherical polar coordinates (r, θ,φ) and with r̂ denoting the unit position vector. The notation Y m s/c
l

represents a spherical harmonic of degree l, order m, and azimuthal dependence sinmφ or cos mφ as
4

Recall Taylor’s recipe for findiing uG (s).
Solve 2nd order differential equation.

In I ∃ 2 constants of integration
In II ∃ 2 constants of integration
In III ∃ 2 constants of integration
Taylor (1963): regularity on axis, and conserve angular momentum
⇒ 3 constraints
To avoid infinite shear, demand (a là Hollerbach/Proctor)
continuity in uG (s) at tangent cylinder:
But now have 5 constraints on 6 unknowns!



Further troubles in a spherical shell

I

II

III

Figure 1: (a) The three regions in the fluid outer core in which the cylindrical contours, associated with Taylor’s constraint, are

defined: outside the tangent cylinder (I), inside the tangent cylinder and above (II) and below (III) the inner core. Dashed lines

mark the tangent cylinder. (b) Illustrative cylinders over which Taylor’s constraint is defined.

solutions. Indeed, the fact that Taylor’s constraint involves three continuums of conditions rather than just

one, leads to the expectation that the class of admissible magnetic field solutions is significantly smaller

than that for a full-sphere. The purpose of this paper is to confront this issue head on, by providing an

elementary mathematical structure for Taylor’s constraint and the explicit construction and comparison of

exact spherical shell with full-sphere Taylor states within a certain well-defined class.

The foundation on which we build was laid down in Livermore et al. [2008], and rests on looking for

solutions of (1) in isolation. This more abstract analysis removes the requirement that such magnetic fields

are stable, or even time-averaged, solutions of the full set of geodynamo equations in the Earth-like limit. To

describe the key result, let us first introduce some notation. We will write the magnetic field in a truncated

set of poloidal and toroidal vector spherical harmonics,

B =
Lmax∑

l=1

l∑

m=0

Sm s/c
l + Tm s/c

l (2)

where

Sm s/c
l = ∇×∇× [Y m s/c

l (θ, φ) Sm s/c
l (r) r̂],

Tm s/c
l = ∇× [Y m s/c

l (θ, φ) Tm s/c
l (r) r̂],

in spherical polar coordinates (r, θ,φ) and with r̂ denoting the unit position vector. The notation Y m s/c
l

represents a spherical harmonic of degree l, order m, and azimuthal dependence sinmφ or cos mφ as
4

Recall Taylor’s recipe for findiing uG (s).
Solve 2nd order differential equation.
In I ∃ 2 constants of integration

In II ∃ 2 constants of integration
In III ∃ 2 constants of integration
Taylor (1963): regularity on axis, and conserve angular momentum
⇒ 3 constraints
To avoid infinite shear, demand (a là Hollerbach/Proctor)
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solutions. Indeed, the fact that Taylor’s constraint involves three continuums of conditions rather than just

one, leads to the expectation that the class of admissible magnetic field solutions is significantly smaller

than that for a full-sphere. The purpose of this paper is to confront this issue head on, by providing an

elementary mathematical structure for Taylor’s constraint and the explicit construction and comparison of

exact spherical shell with full-sphere Taylor states within a certain well-defined class.

The foundation on which we build was laid down in Livermore et al. [2008], and rests on looking for

solutions of (1) in isolation. This more abstract analysis removes the requirement that such magnetic fields

are stable, or even time-averaged, solutions of the full set of geodynamo equations in the Earth-like limit. To

describe the key result, let us first introduce some notation. We will write the magnetic field in a truncated

set of poloidal and toroidal vector spherical harmonics,

B =
Lmax∑

l=1
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m=0

Sm s/c
l + Tm s/c

l (2)
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l (r) r̂],

in spherical polar coordinates (r, θ,φ) and with r̂ denoting the unit position vector. The notation Y m s/c
l

represents a spherical harmonic of degree l, order m, and azimuthal dependence sinmφ or cos mφ as
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continuity in uG (s) at tangent cylinder:

But now have 5 constraints on 6 unknowns!



Further troubles in a spherical shell

I

II

III

Figure 1: (a) The three regions in the fluid outer core in which the cylindrical contours, associated with Taylor’s constraint, are

defined: outside the tangent cylinder (I), inside the tangent cylinder and above (II) and below (III) the inner core. Dashed lines

mark the tangent cylinder. (b) Illustrative cylinders over which Taylor’s constraint is defined.

solutions. Indeed, the fact that Taylor’s constraint involves three continuums of conditions rather than just

one, leads to the expectation that the class of admissible magnetic field solutions is significantly smaller

than that for a full-sphere. The purpose of this paper is to confront this issue head on, by providing an

elementary mathematical structure for Taylor’s constraint and the explicit construction and comparison of

exact spherical shell with full-sphere Taylor states within a certain well-defined class.

The foundation on which we build was laid down in Livermore et al. [2008], and rests on looking for

solutions of (1) in isolation. This more abstract analysis removes the requirement that such magnetic fields

are stable, or even time-averaged, solutions of the full set of geodynamo equations in the Earth-like limit. To

describe the key result, let us first introduce some notation. We will write the magnetic field in a truncated

set of poloidal and toroidal vector spherical harmonics,

B =
Lmax∑

l=1

l∑

m=0

Sm s/c
l + Tm s/c

l (2)

where

Sm s/c
l = ∇×∇× [Y m s/c

l (θ, φ) Sm s/c
l (r) r̂],

Tm s/c
l = ∇× [Y m s/c

l (θ, φ) Tm s/c
l (r) r̂],

in spherical polar coordinates (r, θ,φ) and with r̂ denoting the unit position vector. The notation Y m s/c
l

represents a spherical harmonic of degree l, order m, and azimuthal dependence sinmφ or cos mφ as
4

Recall Taylor’s recipe for findiing uG (s).
Solve 2nd order differential equation.
In I ∃ 2 constants of integration
In II ∃ 2 constants of integration
In III ∃ 2 constants of integration
Taylor (1963): regularity on axis, and conserve angular momentum
⇒ 3 constraints
To avoid infinite shear, demand (a là Hollerbach/Proctor)
continuity in uG (s) at tangent cylinder:
But now have 5 constraints on 6 unknowns!



Summary

I In a full sphere, a fully spectral method provides a finite
characterisation of Taylor’s constraint

I Jones/Worland polynomials provide a numerically attractive
representation in radius

I A projection operator can be used to make T (s) = 0

I We are presently studying geometric integrators for
time-marching schemes


