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PLAN 

•  Geodynamo is driven by thermochemical convection 
that depends on the thermal evolution of the core 

•  Make a good but simple approximation to the 
buoyancy profile from specific core evolution models 

•  Explore numerical geodynamo solutions to see which 
ones (if any) look like the Earth 
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SOURCES OF BUOYANCY 

•  Latent heat – released at bottom & removed at top 
•  Specific heat – released internally (non-uniform) 
•  Radiogenic heating – uniform internal  
•  Compositional – released at bottom and mixed 

internally (uniform) 
•  Adiabatic – heat lost to convection by conduction 

down the adiabat 
•  Barodiffusion – light material lost by diffusion down 

the pressure gradient 



THE REFERENCE STATE 

•  Pressure is nearly hydrostatic: 

•   Convective velocity >> diffusion => 

•  core is well mixed in composition and entropy 
•  temperature is adiabatic 

Remove this and use the Boussinesq equations 
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Temperature in the core is found by integrating up from  
the inner core boundary, where T is the known melting 
temperature 

Time evolution of the (logarithm) of temperature is then 
the same everywhere: 

Evolution related to rate of drop of temperature at the 
core-mantle boundary AND uniform radiogenic heating 
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In Section 3 we produce buoyancy profiles for 3 end-member scenarios of core evolution and

discuss the relative importance of each of the sources of heat and light material. In Section 4

we derive the nondimensional input parameters needed by a set of purely thermally-driven

convection dynamo equations that reflects all the sources of buoyancy. We justify a necessary

modification to bring the Rayleigh numbers into the range of numerically tractable problems.

In Section 5 we discuss the generated magnetic fields of the simulations and implications for

the geodynamo and core evolution. Concluding remarks are made in Section 6.

2 BUOYANCY PROFILES FOR THE EARTH’S CORE

The adiabatic gradient satisfies the equation

Ta(r) = To exp
∫ ro

r

(
gγ

φ
dr

)
(11)

where γ is the Grüneissen constant, g the acceleration due to gravity, and φ the seismic param-

eter. We approximate g with g0r, where g0 is a constant, as in many geodynamo calculations.

We also take γ to be constant, as shown by first principles calculations (Alfè et al., 1999a),

and φ to be constant, a common but weaker approximation. Doing the integral and expanding

the exponential while retaining only the first two terms gives a quadratic expression for the

adiabatic gradient [see also Labrosse et al. (1997)]: Ta(r) = A−Br2. The constants are most

conveniently expressed in terms of the temperatures at the ICB and CMB to give a good

approximation to the full expression for the adiabat:

Ta(r) = Ti −
(Ti − To)(
r2
o − r2

i

)
(
r2 − r2

i

)
=

1(
r2
o − r2

i

) [(Tir
2
o − Tor

2
i )− (Ti − To)r2] (12)

This quadratic approximation differs by less than 8 K from the full calculation using PREM

parameters. It has the advantage of producing a uniform equivalent heat sink because ∇2(A−

Br2) = −6B [cf. equation (11)]. Physically, qa may be regarded as the heat conducted away

from the fluid at a particular location; it does not need to be transported by the convection.

Geometrically, this term causes the amount of heat conducted down the adiabat to increase

with radial distance from the geocentre; less of the input heating is available to drive convec-

tion. For this reason, Anufriev et al. (2005) called this term the heat-flux deficit. The adiabatic

effective heat sink is significant,

comparable with other heat source terms. The barodiffusive flux varies as g ≈ g0r, so

increases with radius if αc and αD can be taken as constants; the gradient steepens towards

the CMB like the adiabat. The equivalent mass sink is uniform: sb = −3αcαDg0.

Temperature and concentration are combined into a cotemperature

APPROXIMATE ADIABATIC GRADIENT 

qa = k∇2Ta

Ignoring variation of thermal expansion with radius gives an 
adiabatic temperature that is quadratic in r: this is accurate to 
about 8 K.  

Subtracting this from the heat diffusion equation is 
equivalent to introducing a uniform heat sink 

Specific Heat varies as the adiabatic temperature: 

qs = −ρCp
dTa (r)

dt
= −ρCp

Ta (r)

To

dTo

dt



COMBINING SOURCES OF BUOYANCY 
The gravitational force is proportional to αTT + αcc so
define a cotemperature

Tco = T +
αc

αT
c

and combine the 2 diffusion equations into 1 by setting
the diffusion constants equal to each other D = κ (they
are turbulent values anyway).

Compromise on boundary conditions:

At r = ro: constant heat flux (specified), zero mass flux, dTco/dr

At r = ri: constant T, c, Tco



NON-DIMENSIONAL EQUATIONS 
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Figure 1 shows the radial variation of T ′
co for Cases 1, 2 and 3. Specific and radiogenic

heating increase linearly with radius while the composition and latent heat terms decrease as

r−2 because light elements and latent heat are released at the ICB. Temperature effects are

weaker than compositional effects, in agreement with core energetics calculations. The adia-

batic gradient also increases linearly with radius and so the superadiabatic gradient reduces

near the CMB for all cases. The small barodiffusive term is similar but too small to be plotted.

In all cases the gradients are much larger at depth in the core than near the CMB.

Composition clearly dominates in all cases, even when substantial radiogenic heating is

incorporated. The buoyancy profile is dominated by sources near the ICB with the cotemper-

ature gradient decreasing by a factor of 50 between the ICB and CMB. For case 2 composition

and heat terms contribute in roughly equal amounts. The buoyancy profile is again dominated

by sources near the ICB with the cotemperature gradient decreasing by a factor of 20 between

the ICB and CMB. In Case 3 the radiogenic heat is greater than any other equivalent heat

source and the buoyancy profile is much flatter. The cotemperature gradient still decreases

by a factor of 5 between the ICB and CMB but starts to flatten out near the middle of the

core due to the radiogenic contribution. In all cases convection is driven most vigorously at

the bottom of the core and is barely superadiabatic at the top.

From now on we neglect barodiffusion; it is too small to have any effect away from bound-

aries. Our code takes a combination of heat sources/sinks and boundary conditions. For the

analysis it is clearer to deal with the equations for the departures of temperature from the

basic and reference state, ϑ, reduced to homogeneous boundary conditions. This is achieved by

subtracting the conduction solutions for each buoyancy source. We nondimensionalise the dy-

namo equations with τ = d2/κ for time, B =
√
µ0ρκΩ for magnetic field, and Θ = Ωκ/αT g0d2

for the temperature perturbation. The basic state temperature gradients [(28)–(32)] have the

general form

T ′(r) =
β(b)

r2
+ β(i)r + β(s)r3 (34)

where the constants β determine the amount of bottom heating, internal heating, and the

non-uniform part of the specific heating. T ′ is not scaled the same way as ϑ, instead it is

scaled with the adiabatic gradient, 2dκ(Ti − To)/κT(ro + ri) from (28). In this way we can

define one Rayleigh number in terms of the adiabat and relate other forms of buoyancy to it.

The resulting nondimensional equations of momentum, induction, and heat are

Pr−1E
[
∂u

∂t
+ (u ·∇)u

]
+ 2Ω̂× u = −∇P + ϑr̂ + (∇×B)×B+ E∇2u (35)

∂B

∂t
= ∇× (u×B) + q−1∇2B (36)14 C. J. Davies and DĠubbins

∂ϑ

∂t
+ u ·∇ϑ = ∇2ϑ− ERa urT

′ (37)

to be solved with the usual solenoidal conditions ∇ ·u = ∇ ·B = 0. The dimensionless groups

are

Pr =
νT
κT

; q =
κT
η
; E =

νT
Ωd2

; ERa =
2αTκg0d3 (Ti − To)

Ωκ2T (ro + ri)

Ra has the form of a conventional Rayleigh number:

Ra = 2
αT g0d5 (Ti − To)

κTνT (ro + ri)
, (38)

[note the factor 2d/(ro + ri) = 0.96 is close to unity]. At first sight this choice of Ra seems

strange because it is based on the temperature scale (Ti − To), which has nothing to do

with the Boussinesq equations: it actually measures the extent to which the adiabat reduces

convection by the heat deficit. However, unlike the βs, it depends only on core properties and

not on the model parameters dTo/Dt and qr, so does not vary between core evolution models.

Furthermore, realistic values of Ra are not achievable in numerical geodynamo simulations

whereas realistic ratios of the βs are.

Putting in numerical values from Table 1 gives Ra = 2.16× 1012. This may seem high but

it is not for rotation as rapid as the Earth’s. The critical Rayleigh number for rapidly rotating

convection scales as Rac = O(E−4/3) and for magnetoconvection as O(E−1) (Chandrasekhar,

1961). For nonmagnetic convection the constant depends on the Prandtl number but is of

order unity (Zhang, 1992); for magnetoconvection Rac depends critically on the applied mag-

netic field and the results are harder to apply to a dynamo where the field is self-generated.

For the Earth with turbulent diffusivities E = 10−9 giving Rac = O(1012) for nonmagnetic

convection and O(109) for magnetoconvection. The geodynamo is therefore operating at a

Rayleigh number that is near to critical for nonmagnetic convection or a thousand times

critical for magnetoconvection, as found by Gubbins (2001) using a similar argument and

independently by Jones (2000), whose estimate is based on the speed of core motions inferred

at the top of the core. It would be inappropriate to use such a high numerical value for Ra

in a calculation with much larger Ekman number: all geodynamo calculations are limited to

E10−6. The best option is to keep the Rayleigh number about the same in relation to the

critical Rayleigh numbers for the value of E used. In this study we have kept Ra rather low

but above critical; we draw no conclusions from the absolute values used for Ra, only for the

relative mix of bottom and internal heating.

The separate coefficients β are listed in Table 3. These are simply derived from the corre-

sponding temperature gradients in equations (28)–(32), including the length scale d in place
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[note the factor 2d/(ro + ri) = 0.96 is close to unity]. At first sight this choice of Ra seems

strange because it is based on the temperature scale (Ti − To), which has nothing to do

with the Boussinesq equations: it actually measures the extent to which the adiabat reduces

convection by the heat deficit. However, unlike the βs, it depends only on core properties and

not on the model parameters dTo/Dt and qr, so does not vary between core evolution models.

Furthermore, realistic values of Ra are not achievable in numerical geodynamo simulations

whereas realistic ratios of the βs are.

Putting in numerical values from Table 1 gives Ra = 2.16× 1012. This may seem high but

it is not for rotation as rapid as the Earth’s. The critical Rayleigh number for rapidly rotating

convection scales as Rac = O(E−4/3) and for magnetoconvection as O(E−1) (Chandrasekhar,

1961). For nonmagnetic convection the constant depends on the Prandtl number but is of

order unity (Zhang, 1992); for magnetoconvection Rac depends critically on the applied mag-
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at the top of the core. It would be inappropriate to use such a high numerical value for Ra

in a calculation with much larger Ekman number: all geodynamo calculations are limited to

E10−6. The best option is to keep the Rayleigh number about the same in relation to the

critical Rayleigh numbers for the value of E used. In this study we have kept Ra rather low

but above critical; we draw no conclusions from the absolute values used for Ra, only for the

relative mix of bottom and internal heating.

The separate coefficients β are listed in Table 3. These are simply derived from the corre-

sponding temperature gradients in equations (28)–(32), including the length scale d in place



EQUIVALENT BASIC STATE CONDUCTION 
TEMPERATURES 
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with the appropriate boundary conditions. Each basic state temperature profile must satisfy

the upper fixed gradient condition on the CMB. The lower temperature boundary condition

only serves to determine the temperature and is no longer relevant because we only need

the gradient. The upper boundary condition in each case must be calculated from the heat

flowing through the CMB: for each heating mode T ′(ro) = −Q/4πr2ok. When the heat source

is distributed over both inner and outer cores, as is the case with specific and radiogenic heat,

the constant of integration is determined by regularity at the origin and the upper boundary

condition is satisfied automatically.

The uniform heat sources, qr, qc and qb have linear temperature gradients. The adiabatic

gradient is obtained simply by differentiating (12). Specific heat is a little more complicated

because the source is quadratic and the temperature gradient involves an r3 term in addition

to the usual r from the uniform part of the heating; it rises from 2% of the linear term at the

ICB to 17% at the CMB. Latent heat gives a temperature gradient proportional to r−2. All

these quantities are input for the Boussinesq equations, which use turbulent thermal rather

than molecular diffusivity; therefore they must also be expressed in terms of the turbulent

diffusivity or thermal conductivity kT = ρ̄CPκT. The resulting temperature gradients are:

T ′
a = −2

k

kT

(Ti − To)(
r2o − r2i

)r (28)

T ′
r =

qr
3kT

r (29)

T ′
c = −

3κT

αc

αT

4πr2i ρic0
τrMoc

(

r − r3o
r2

)
Ti

To

dTo

dt
(30)

T ′
s =

1

κT
(
r2o − r2i

)
[
1

3
(Tir

2
o − Tor

2
i )r −

1

5
(Ti − To)r

3
]

1

To

dTo

dt
(31)

T ′
L =

ρiL

τrkT

Ti

To

dTo

dt

r2i
r2

(32)

T ′
b =

α2
cαDg0
αT ρ̄κT

r. (33)

3 INPUT PARAMETERS FOR THE GEODYNAMO CALCULATIONS:

NUMERICAL VALUES

We use three scenarios for core evolution taken from Gubbins et al. (2004a) and summarised

in Table 2. All have ICB density jump 0.59 Mgm−3 and Cases 1, 2 and 3 here correspond

to Models (i), (ii), and (v) in Table 5 of Gubbins et al. (2004a). Case 1 has a rapid cooling

rate, high CMB heat flow and a young inner core. Case 2 has a lower cooling rate and a total

General form: 
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Figure 1 shows the radial variation of T ′
co for Cases 1, 2 and 3. Specific and radiogenic

heating increase linearly with radius while the composition and latent heat terms decrease as

r−2 because light elements and latent heat are released at the ICB. Temperature effects are

weaker than compositional effects, in agreement with core energetics calculations. The adia-

batic gradient also increases linearly with radius and so the superadiabatic gradient reduces

near the CMB for all cases. The small barodiffusive term is similar but too small to be plotted.

In all cases the gradients are much larger at depth in the core than near the CMB.

Composition clearly dominates in all cases, even when substantial radiogenic heating is

incorporated. The buoyancy profile is dominated by sources near the ICB with the cotemper-

ature gradient decreasing by a factor of 50 between the ICB and CMB. For case 2 composition

and heat terms contribute in roughly equal amounts. The buoyancy profile is again dominated

by sources near the ICB with the cotemperature gradient decreasing by a factor of 20 between

the ICB and CMB. In Case 3 the radiogenic heat is greater than any other equivalent heat

source and the buoyancy profile is much flatter. The cotemperature gradient still decreases

by a factor of 5 between the ICB and CMB but starts to flatten out near the middle of the

core due to the radiogenic contribution. In all cases convection is driven most vigorously at

the bottom of the core and is barely superadiabatic at the top.

From now on we neglect barodiffusion; it is too small to have any effect away from bound-

aries. Our code takes a combination of heat sources/sinks and boundary conditions. For the

analysis it is clearer to deal with the equations for the departures of temperature from the

basic and reference state, ϑ, reduced to homogeneous boundary conditions. This is achieved by

subtracting the conduction solutions for each buoyancy source. We nondimensionalise the dy-

namo equations with τ = d2/κ for time, B =
√
µ0ρκΩ for magnetic field, and Θ = Ωκ/αT g0d2

for the temperature perturbation. The basic state temperature gradients [(28)–(32)] have the

general form

T ′(r) =
β(b)

r2
+ β(i)r + β(s)r3 (34)

where the constants β determine the amount of bottom heating, internal heating, and the

non-uniform part of the specific heating. T ′ is not scaled the same way as ϑ, instead it is

scaled with the adiabatic gradient, 2dκ(Ti − To)/κT(ro + ri) from (28). In this way we can

define one Rayleigh number in terms of the adiabat and relate other forms of buoyancy to it.

The resulting nondimensional equations of momentum, induction, and heat are

Pr−1E
[
∂u

∂t
+ (u ·∇)u

]
+ 2Ω̂× u = −∇P + ϑr̂ + (∇×B)×B+ E∇2u (35)

∂B

∂t
= ∇× (u×B) + q−1∇2B (36)



RAYLEIGH NUMBERS 

For the Earth:

Ra =
2αTg0κd5 (Ti − To)

κ2
TνT (ro + ri)

≈ 2.16× 1012

with Ekman number and asymptotic critical Rayleigh
numbers:

E = 10−9; E−1 = 109; E−4/3 = 1012

Ra in the Earth is close to the critical Rayleigh number
for non-magnetic rotating convection with turbulent dif-
fusivities.
For this calculation:

E = 10−4; E−1 = 104; E−4/3 = 2.15× 105



3 END-MEMBER CORE EVOLUTION 
MODELS 
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Case 1 Case 2 Case 3

dTo/dt = 123 K/Gyr dTo/dt = 69 K/Gyr dTo/dt = 12 K/Gyr

h = 0 h = 0 h = 4 pW/kg

a 0 -1 0 0 -1 0 0 -1 0

r 0 0 0 0 0 0 0 1.06 0

c 6.59 -1.90 0 3.70 -1.10 0 0.64 -0.18 0

s 0 1.23 -0.09 0 0.69 -0.05 0 0.12 -0.01

L 2.74 0 0 1.54 0 0 0.27 0 0

Total 9.33 -1.67 -0.09 5.24 -1.4 -0.05 0.91 0.00 -0.01

Table 3. Numerical values for the dimensionless constants appearing in the equation for the con-

duction temperature (34), β(i)
a etc. Note that the r3 term in the specific heat, β(s)

s , is small enough

to be neglected, leaving a combination of bottom and uniform internal heating. Case 3, which has a

large amount of radiogenic heating, happens to have virtually no net internal heating. Compositional

contributions (subscript c) dominate thermal contributions.

of the powers of r. They are scaled with the adiabatic value, which has been incorporated into

the Rayleigh number (38).

4 GEODYNAMO MODELS

Our numerical simulations focus on the effect of changing Ra for each of the core evolution

scenarios described above. We fix E = 10−4 and q = Pr = 1, so that a number of runs for

each case can be performed, and compare solutions with the same Ra. The solutions differ by

the values of β in table 3 and also the outer boundary condition; hence it is not possible to

scale radial buoyancy profiles between cases.

Global time-averaged properties of the solutions are shown in table 4. In all cases kinetic

energy tends to dominate magnetic energy as Ra increases, a result previously established

for strongly-driven dynamos with simple heating modes (Takahashi & Matsushima, 2005).

Em/Ek < 1 has been described as the so-called “weak-field” regime (Glatzmaier & Roberts,

1995), in contrast to the geodynamo which is believed to be of “strong-field” type. However,

as pointed out by Busse et al. (1998), Em/Ek increases with Pr; the change in Em/Ek is

more likely related to saturation of the dynamo at fixed Prandtl numbers. A better criterion

is perhaps the Elsasser number, Λ = 2EEm
VocPm , the ratio of Lorentz and Coriolis forces (see table

4). For the Earth, Λ ≈ 1 and Λ ≥ O(1) is taken to represent a strong-field dynamo (e.g.

Zhang & Schubert, 2000); all of our dynamos have Λ = O(1) implying they are of strong-field

type. Hence, neither Em/Ek or Λ allow us to discriminate between the different cases. Ohmic

        (b)                (i)              (s)              (b)              (i)               (s)             (b)             (i)                (s) 
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Figure 1 shows the radial variation of T ′
co for Cases 1, 2 and 3. Specific and radiogenic

heating increase linearly with radius while the composition and latent heat terms decrease as

r−2 because light elements and latent heat are released at the ICB. Temperature effects are

weaker than compositional effects, in agreement with core energetics calculations. The adia-

batic gradient also increases linearly with radius and so the superadiabatic gradient reduces

near the CMB for all cases. The small barodiffusive term is similar but too small to be plotted.

In all cases the gradients are much larger at depth in the core than near the CMB.

Composition clearly dominates in all cases, even when substantial radiogenic heating is

incorporated. The buoyancy profile is dominated by sources near the ICB with the cotemper-

ature gradient decreasing by a factor of 50 between the ICB and CMB. For case 2 composition

and heat terms contribute in roughly equal amounts. The buoyancy profile is again dominated

by sources near the ICB with the cotemperature gradient decreasing by a factor of 20 between

the ICB and CMB. In Case 3 the radiogenic heat is greater than any other equivalent heat

source and the buoyancy profile is much flatter. The cotemperature gradient still decreases

by a factor of 5 between the ICB and CMB but starts to flatten out near the middle of the

core due to the radiogenic contribution. In all cases convection is driven most vigorously at

the bottom of the core and is barely superadiabatic at the top.

From now on we neglect barodiffusion; it is too small to have any effect away from bound-

aries. Our code takes a combination of heat sources/sinks and boundary conditions. For the

analysis it is clearer to deal with the equations for the departures of temperature from the

basic and reference state, ϑ, reduced to homogeneous boundary conditions. This is achieved by

subtracting the conduction solutions for each buoyancy source. We nondimensionalise the dy-

namo equations with τ = d2/κ for time, B =
√
µ0ρκΩ for magnetic field, and Θ = Ωκ/αT g0d2

for the temperature perturbation. The basic state temperature gradients [(28)–(32)] have the

general form

T ′(r) =
β(b)

r2
+ β(i)r + β(s)r3 (34)

where the constants β determine the amount of bottom heating, internal heating, and the

non-uniform part of the specific heating. T ′ is not scaled the same way as ϑ, instead it is

scaled with the adiabatic gradient, 2dκ(Ti − To)/κT(ro + ri) from (28). In this way we can

define one Rayleigh number in terms of the adiabat and relate other forms of buoyancy to it.

The resulting nondimensional equations of momentum, induction, and heat are

Pr−1E
[
∂u

∂t
+ (u ·∇)u

]
+ 2Ω̂× u = −∇P + ϑr̂ + (∇×B)×B+ E∇2u (35)

∂B

∂t
= ∇× (u×B) + q−1∇2B (36)
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cotemperature. Top: case 1; middle: case 2; bottom: case 3. The line denoted “Thermal+Compositional”

gives the total radial buoyancy profile.



DIPOLE MOMENT 20 C. J. Davies and DĠubbins

-0.015

-0.01

-0.005

0

0.005

0.01

25,00020,00010,0000

g0 1
(m

T
)

t (kyr)

Figure 6. Time-series of the spherical harmonic coefficient g01 (the dipole coefficient) for cases 1c, 2d

and 3d. The timespan is the final 25,000 years (one free dipole decay time) of each run.

with a small value of g01 compared to the other runs; this coefficient still dominates all oth-

ers. Case 3d reverses very regularly and its spatial structure is always dominated by higher

multipoles.

5 DISCUSSION

The magnetic fields corresponding to our three example buoyancy profiles display significant

differences in the surface fields despite all being driven predominantly from below, imply-

ing that the generated magnetic field is sensitive to small changes in the radial distribution

of buoyancy. Each buoyancy profile corresponds to a scenario for core evolution because it

depends on the rate of temperature drop at the outer boundary and the rate of radiogenic

heat production (if applicable), which in turn establish the total heat-flux through the outer

boundary and the age of the inner core. We discuss implications of our results for core evolu-

tion models below, stating here that the limitations of the numerical simulations and also of

the number of data points we have accumulated must always be borne in mind.

Dynamos corresponding to a young inner core (case 1) contain several features seen in the

geomagnetic field: they have dipole-dominated surface fields, occasionally reverse and, when

filtered to degree, display high-latitude flux patches located around the tangent cylinder,
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Figure 2. Time-averaged Br at the outer boundary for Ra = 20 (top) and Ra = 200 (bottom). Left:

case 1; middle: case 2; right: case 3. All averages are taken over one magnetic diffusion time, here

defined as 100, 000 years.

an increase in symmetric magnetic energy, which are reflected in a weakening of the dipole.

Kinetic and magnetic spectra become flatter as Ra increases, reflecting the increasing spatial

complexity of the flow and field as the system is driven harder. Importantly, the magnetic

energy spectra at Ra/Rac = 200 for cases 1 and 2 still contain most energy at l = 1 and

m = 0, but case 3 has most energy at l ≈ 10 and m = 1. It is clear from figure 2 and these

results that case 3 is quite distinct from cases 1 and 2 despite the fact that cases 2 and 3 both

have zero superadiabatic gradient at the outer boundary. The difference is due to the different

radial buoyancy profiles.

Figure 4 shows Br at the outer boundary truncated at harmonic degree 12 for compar-

ison with current global geomagnetic field models. For Ra/Rac = 20 the truncated fields

are dipolar. For Ra/Rac = 200, which is more representative of the Earth, significant non-

axisymmetric structure is present indicating that the averaging time is not sufficient to recover

the dipole field; it is nevertheless longer than the time spanned by current geomagnetic field

models. The surface field for case 1 displays two or three patches of magnetic flux in each

hemisphere located at high latitudes and reversed flux near the equator. For case 2 the dipole

component is more pronounced than in case 1 reflecting the weaker radial buoyancy force.

By contrast, the field for case 3 is non-axisymmetric and nondipolar. The field amplitude for

case 2 is similar between filtered and unfiltered fields, while in cases 1 and 3 it has dropped

markedly upon filtering; significant energy is contained in the small-scale field for cases 1 and

3, which would not be visible using observational data. Such significant differences between

the truncated fields suggest that observational geomagnetic field models may be used to dis-

     CASE I   CASE II            CASE III  

ERa = 20 (top), 200 (bottom) 
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Figure 5. Time-averaged radial velocity in the equatorial (top) and meridional (middle) planes and

Br in the meridional plane (bottom) for case 1c (left), case 2d (middle), and case 3d (right). Meridional

sections are taken at π/2. Plots are averaged over one magnetic diffusion time.

2, vigorous convection is confined near the inner boundary where the buoyancy is strongest;

we attribute this to causing the strong dipolar field seen in all dynamos for case 2. Convection

is most vigorous for case 1, being significantly stronger near the inner boundary because of

the large compositional gradient there, while convection is weakest in case 3 because dTo/dt

has been drastically reduced (which mainly affects the bottom heating terms) in favour of

a large radiogenic heat source (internal heating). Meridional sections for cases 1 and 2 show

strong quasi-columnar motion just outside the tangent cylinder, which correlates with regions

of strong Br. For case 3 vigorous convection is confined within the tangent cylinder where the

field is weak. We suggest that with substantial bottom heating (cases 1 and 2), the surface

field is more representative of the field deeper in the shell; for case 3 with substantial internal

heating the surface field bears little relation to the deeper field.

Finally we consider the time-dependence of the dipole harmonic g01 for solutions with

Ra/Rac = 200 (figure 6). Case 1c reverses occasionally; in stable polarity intervals the dipole

coefficient is much greater than in any other case. Case 2d is a stable, non-reversing dynamo

Vr equatorial section 

Vr meridional section 

Br meridional section 

   I                                II                             III 



CONCLUSIONS 

•  Geodynamo runs at somewhere near the critical 
Rayleigh number for non-magnetic convection, 1000 
times that for magnetoconvection 

•  Compositional buoyancy dominates 
•  Convection is driven most strongly at the bottom of 

the core, hardly at all at the top 
•  Internal heating does not produce a sufficiently large 

dipole 
•  Inadequate cooling does not produce a strong 

enough dipole, nor sufficient time variations. 


