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PLAN

« Geodynamo is driven by thermochemical convection
that depends on the thermal evolution of the core

 Make a good but simple approximation to the
buoyancy profile from specific core evolution models

« Explore numerical geodynamo solutions to see which
ones (if any) look like the Earth






SOURCES OF BUOYANCY

Latent heat — released at bottom & removed at top
Specific heat — released internally (non-uniform)
Radiogenic heating — uniform internal
Compositional — released at bottom and mixed
internally (uniform)

Adiabatic — heat lost to convection by conduction
down the adiabat

Barodiffusion — light material lost by diffusion down
the pressure gradient



THE REFERENCE STATE

* Pressure is nearly hydrostatic: d_P = —pg
dr
* Convective velocity >> diffusion =>

» core Is well mixed in composition and entropy
* temperature is adiabatic

Remove this and use the Boussinesq equations



Temperature in the core is found by integrating up from
the inner core boundary, where T is the known melting
temperature

T(r)=T exp f—gydr

Time evolution of the (Iogarlthm) of temperature is then
the same everywhere:

l dT, 1dT
T dt T dt

Evolution related to rate of drop of temperature at the
core-mantle boundary AND uniform radiogenic heating




APPROXIMATE ADIABATIC GRADIENT

Ilgnoring variation of thermal expansion with radius gives an
adiabatic temperature that is quadratic in r: this is accurate to
about 8 K.

) =T ) () = gy (B~ Tord) (1T

Subtracting this from the heat diffusion equation is
equivalent to introducing a uniform heat sink

(Ja — kv2Ta
Specific Heat varies as the adiabatic temperature:

dT, (1) B T, (r) dT,
a - YT
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COMBINING SOURCES OF BUOYANCY

The gravitational force is proportional to at1 + a.c so
define a cotemperature

Too = T + —2c
QT

and combine the 2 diffusion equations into 1 by setting
the diffusion constants equal to each other D = k (they
are turbulent values anyway).

Compromise on boundary conditions:

At r = r,: constant heat flux (specified), zero mass flux, d7¢,/dr

At r = ry: constant T', ¢, T,



NON-DIMENSIONAL EQUATIONS
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Ra has the form of a conventional Rayleigh number:
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EQUIVALENT BASIC STATE CONDUCTION

General form:
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RAYLEIGH NUMBERS

For the Earth:
o 2(1T90/€d5 (ﬂ — To)

’izTVT (o +71)

Ra ~ 2.16 x 10

with Ekman number and asymptotic critical Rayleigh
numbers:

E=10"" E'=10° E%3=10"

Ra in the Earth is close to the critical Rayleigh number
for non-magnetic rotating convection with turbulent dif-
fusivities.

For this calculation:

E=10"% E'=10% E*3=215x%x10°



3 END-MEMBER CORE EVOLUTION

MODELS
b)
T'(r) = i( + B 4+ g)y?
Case 1 Case 2 Case 3
dT,/dt = 123 K/Gyr dT,/dt = 69 K/Gyr dT,/dt = 12 K/Gyr
h=0 h=0 h =4 pW /kg
a 0 -1 0 0 -1 0 0 -1 0
r 0 0 0 0 0 0 0 1.06 0
c 6.59 -1.90 0 3.70 -1.10 0 0.64 -0.18 0
S 0 1.23 -0.09 0 0.69 -0.05 0 0.12 -0.01
L 2.74 0 0 1.54 0 0 0.27 0 0
Total 9.33 -1.67 -0.09 5.24 -14 -0.05 0.91 0.00 -0.01
(b) (i) (s) (b) (1) (s) (b) (1) (s)




APPLIED CONDUCTION COTEMPERATURES

Radial variation of cotemperature gradient with radius for d7,/dt = 123 K/Gyr and h = 0
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APPLIED CONDUCTION COTEMPERATURES

Radial variation of cotemperature gradient with radius for dT,/dt = 12 K/Gyr and h = 4 x 10712 W /kg
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TIME-AVERAGED (100 kyr) SURFACE B.

ERa = 20 (top), 200 (bottom)
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V. equatorial section

V. meridional section

B, meridional section
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CONCLUSIONS

Geodynamo runs at somewhere near the critical
Rayleigh number for non-magnetic convection, 1000
times that for magnetoconvection

Compositional buoyancy dominates

Convection is driven most strongly at the bottom of
the core, hardly at all at the top

Internal heating does not produce a sufficiently large
dipole

Inadequate cooling does not produce a strong
enough dipole, nor sufficient time variations.



