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MEAN-FIELD DYNAMO THEORY

All dynamo mechanisms

revealed by mean—field dynamo theory
require some deviation

of the small—scale motions

from reflectional symmetry.



Consider
ISOTROPIC NON-MIRRORSYMMETRIC
TURBULENCE.

It shows an a-effect, € = aB,
which makes a dynamo possible.

Consider further
high—conductivity limit, i.e. Teor <€ A2,./7,
and second—order correlation approximation.
Then

1 oo

@=—2 . (u'(z,t) - (V x u/(x,t —7)))dr,

or

o= —%(u’(w,t) (V x (@, ) Teor (%)

Result (x) occurs also in other approximations
(e.g. Vainshtein et al. 1983, Radler et al. 2003).

It is often overinterpreted in the sense that
the averaged kinetic helicity (u/- (V x u'))
is crucial for any a—effect dynamo

or even any mean—field dynamo.



With
ANISOTROPIC TURBULENCE
the situation is more complex.

If an a—effect at all exists (see below)
a IS no longer a scalar but a tensor.

With the assumptions introduced so far
it applies

trace(a) = — /Ooo(u'(a:,t) (V x u/(@,t —7)))dr,
or

trace(a) = —(u/(z,t) - (V x u'(x, 1)) mcor -

BUT the quantity of interest for dynamos
is not trace(a).

Consider, e.g., the aw—dynamo,
nA'A+ appB — A =0

nA'B + (Vw x V(rsindA)),— B =0.



Anisotropic turbulence ...

Note that

trace(a) = — /Oo <%Ur(t)az9ugo(t —T)
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Anisotropic turbulence ...

Examples

app = ftrace(a)
(=—f (u’ - (V x u’)) Teor)

o Isotropic turbulence

o Convection in layer (g || ©2)
Brandenburg et al. 1990
Kleeorin & Rogachevskij 2003

o Inhomogeneous anisotropic
turbulence (VF, Q)
Rudiger et al. 1993
Radler et al. 2003
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Return to
ISOTROPIC NON-MIRRORSYMMETRIC
TURBULENCE.

Consider now

low—conductivity limit, i.e. 7cor > A2,./7,
and second—order correlation approximation.
Then

0=~ [ (W07l 6 0) S
3
= o @D Ex v+ e G

Introduce the vector potential ¥ of u
sothatw/ =V x4y +V--- and V-1 =0.
This implies

b= [ (Exu(z+ e,t»dg—?
Then

o=~ {u(,0) - P, 1)
n

_ _3i<¢(m,t) (V x(z,t))).
n



Homogeneous isotropic turbulence,

low—conductivity limit,

=L (VX)) ..

The quantity (¥ - (V x v)),

which is now the relevant quantity
for dynamo action,

is basically different from (u’- (V x u")).

It can be non—zero
even if (u' - (V x u')) vanishes.

See also
modified Roberts dynamo
below.



Consider now
HOMOGENEOUS AXISYMMETRIC
TURBULENCE.

Assume, e.g., that it deviates

from a homogeneous isotropic turbulence
only by the action of a Coriolis force
defined by an angular velocity (2.

In this case there is no a—effect,
and (u' - (V xu")) = (¢p- (V x 1)) =0.

Nevertheless a dynamo is possible

due to a contribution to &€

proportional to Q2 x (V x B)

(the'Q) x j—effect’)

in combination with a differential rotation.
(R&dler 1969,70,76,86,

Roberts and Stix 1972, Stix 1976)

Note that the turbulence considered here
well deviates from reflectional symmetry.
But this kind of deviation is not indicated

by (u’- (V x u')) or (¢ (V x4)).



Homogeneous axisymmetric turbulence,
contribution to €

proportional to 2 x (V x B), ...

There are several related dynamo mechanisms
with other contributions to &€

containing derivatives of B

and differential rotation.

(R&dler 1986)

It remains to be investigated
to which extend such mechanisms
play a role in the geodynamo.



“LAMINAR" DYNAMO THEORY

In many dynamo models
the Kinetic helicity u - (V x u)
IS unequal to zero.

However,

this is not a necessary condition
for dynamo action.

There are quite a few examples
of working dynamos

in which u - (V X uw) vanishes everywhere.

o Gailitis 1970,93,95

o Zheligovsky and Galloway 1998



Consider now
the ROBERTS DYNAMO
(Roberts 1972).

In a slightly modified form it was realized
in the KARLSRUHE DYNAMO EXPERIMENT.
(Mdller and Stieglitz 2000,

Stieglitz and Miller 2001,02)

o The original Roberts dynamo
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The original Roberts dynamo

Start from
nWV?°B+Vx((uxB)—-8B=0,V-B=0,
with
Up = —uJ_g Sin(gx) cos(gy)
T T ] s
Uy = —|—uL5 cos(Eac) snn(ay)
T ) s . T
Uy = —u”(a)2 S|n(5x) sm(Ey).

Define Note that w-(V xu) > 0.

Rmsz and R_j|=—.
2n

Look for solutions of the form
B = R(B(z,y) exp(ikz + pt)).

Non—decaying solutions, i.e. dynamo, if

32a
RmJ_RmH(b(RmJ_) > ?77

where [ = 2T period length of B in z—direction.
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o The Karlsruhe realization
of the Roberts dynamo

Again u-(V xu) >0

Excitation condition
similar to that of the original Roberts dynamo.



o Mean—field approach
to dynamos of Roberts type
with a more general flow patterns

Assume that w periodic in x and y
with period length 2a.

Define mean fields F by averaging over z and v,
F = (F),

(Fay, ) =55 [ [* Fla+g&y+n=)dedn.

Then
u=20
and
nWV°B+Vx€E-6B=0,V-B=0,
with
E=uxB.



Mean—field approach to Roberts dynamo, € =u X B, ...

Assume that &€
is a linear and homogeneous functional of B.

Assume further that B and &
are independent of x and y.

Represent quantities depending on z
in the form

F(z2) = /_O:O F (k) exp(ikz) dk .

T hen

—~

nk’B+ikex&-8,B=0, e-B=0,

where e is the unit vector in z—direction.

The above assumption on € implies

—
~ —_—
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Mean—field approach to Roberts dynamo, &; = a;;Bj, ...

Assume now that u is independent of z,
steady,

changes its sign

if shifted along = or y—axis by a length a
and under 90° rotation about z—axis.

Then a;; must have the structure

a;; = —a (k)(8;5 — ejej) + iB(k)kejper
with two functions a; and B of k.
Thus

2=—&L(§—(e-§)e)—i3kex§.

This is equivalent to
1 o0
£t =—[ ai(©
(B(z+¢,t) — (e- B(z+¢,t)) e)d¢

1 0 [0 _
———ex o [ BOBG+( A

with e
a) (¢) = /_O:O a | (k) exp(ik¢)dk
B(O) = [ Blk) exp(ik()dk .



Mean—field approach to Roberts dynamo

The equations for B allow solutions

of the form

B = C(cos(kz),+sin(kz),0) exp(pt)
p=—(n+ Bk)k? £ a (k)k.

That is, |A (k)|
a |
(1B = 1

Assume (as will be confirmed later)
that a; takes a finite non—zero value
and B remains also finite as k — 0.

a dynamo occurs if

Then a dynamo is always possible
if only k is sufficiently small.



Mean-field approach to Roberts dynamo

Consider the limit kK — O.
Then
E = —CVL(P— (GP)G) with x| :&L(O)

Assuming that o is small

(but large enough for dynamo action)

we may calculate it along the lines

of the second—order correlation approximation.

This yields

1., 1
= g w ) = o W (VX))

with 1 such that u =V x 1.

Q|

It is now easy
to find examples with u-(V x u) = 0,

in which (- (V x 1)) %0

and therefore a dynamo is possible.



Mean—field approach to Roberts dynamo

3|l %(1 —|—5) 3

\
J

-
\

Regions with moving fluid
() r<g
ur =up, =0, wu, = —u=const

V1 rate of volumetric flow

through cross-section r < %
u-(Vxu)=0
(i) $(14+8)<r<4g
ur =0, up=-wr, wu,=—cw;s

V5> rate of volumetric flow
through 2(1+4+6) <r<3,0<z2<a

u-(Vxu)~e

Averages

(- (V x w)) = 16me 5

a5(1 — (1 +6)2/4)2 V3

2
(- (V x)) = s+ gé‘Vz) Vo
(independent of §)




Modified Roberts dynamo
Numerical results
(independent of the mean—field approach

and the approximations discussed so far)

Marginal dynamo states

with ak = 0.9

0 2 Vifan Va/an

0 0.288 2 0.736 Karlsruhe
0 0 2 0.805 no helicity
0.2 0 2 0.965 no helicity

Helicity is unnecessary
for Roberts—type dynamos — but it helps !

Cf. Gilbert et al. 1988
“Helicity is unnecessary for a—effect dynamos,
but it helps”



The results presented here might suggest
that a necessary condition

for steady dynamo action

is that ¥ - (V x )

does not vanish everywhere.

But this is not correct.

See, e.g.,
Gailitis dynamo
or

Herzenberg dynamo.

In these cases (v - (V x 1)) = 0.



